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Abstract—Genetic Programming (GP) has previously proved
to achieve valuable results on the fields of image processing
and arcade learning. Similarly, it can be used as an adversar-
ial learning approach to evolve malware samples until static
learning classifiers are no longer able to detect it. While the
implementation is relatively simple compared with other Machine
Learning approaches, results proved that GP can be a competitive
solution to find adversarial malware examples comparing with
similar methods. Thus, AIMED – Automatic Intelligent Malware
Modifications to Evade Detection – was designed and imple-
mented using genetic algorithms to evade malware classifiers. Our
experiments suggest that the time to achieve adversarial malware
samples can be reduced up to 50% compared to classic random
approaches. Moreover, we implemented AIMED to generate
adversarial examples using individual malware scanners as target
and tested the evasive files against further classifiers from both
research and industry. The generated examples achieved up to
82% of cross-evasion rates among the classifiers.

Index Terms—AIMED, Genetic Programming, Malware, Byte-
level perturbations, Adversarial learning

I. INTRODUCTION

The development of new threats is still an arms-race be-
tween criminals and researchers. The easier it is to find new
ways to develop malware, the most important it is for security
researchers to understand how to prevent these attacks. De-
tecting malicious software using machine learning techniques
has been increasingly embraced by security companies for a
while now [1]–[3].

Nevertheless, advances in adversarial machine learning have
shown that white box learning models [4] are vulnerable to
gradient-based attacks and non-differentiable algorithms [5]
that report a score for detection can be compromised by
genetic algorithms. Furthermore, recent approaches to attack
black box learning models using Reinforcement Learning (RL)
have proved to create successful mutations, though function-
ality is not always guaranteed for the new malware muta-
tions [6]. Using a Generative Adversarial Networks (GAN)
was also proposed [7] against black box models to bypass
detection. In that approach they use a neural network surrogate
model to fit the target classifier and a generator to create
the evasive examples. However, the authors assume that the
attackers should be fully aware of the features implemented
in the model, which can be challenging for practical scenarios.
While machine learning has drastically improved its accuracy
and scores, it has been shown [4] that neural networks exhibit

a non-reliable behavior when confronted with unexpected
input, so called adversarial examples. These have been widely
studied in the literature mostly in the image domain [8],
whereas altering the structure of Windows Portable Executable
(PE) files can compromise its functionality [9]. In addition to
that, once a piece of malware is detected it is usually no longer
useful for cybercriminals. Hence, committed adversaries are
required to create new techniques to bypass detection.

We therefore present AIMED – Automatic Intelligent
Malware Modifications to Evade Detection – a genetic pro-
gramming (GP) approach to automatically find optimized
modifications that, when injected into the previously-detected
malware, will result in misclassification by malware scanners.

The underlying idea is to manipulate the malware structure
in order to increase the likelihood that the modified sample
will no longer be detected by a classifier while making
sure its functionality is preserved. Automatically generating
adversarial examples for malware scanners can be interesting
from the security perspective to understand how byte-level
modifications impact malicious samples without corrupting
them. Furthermore, static malware detection plays an impor-
tant role in security as it allows to proactively detect malicious
threats prior to its execution. Therefore, we aim to provide an
environment that can help researchers both in academia and
the industry to further improve malware detection. To the best
of our knowledge this is the first time GP is implemented
to find adversarial malware examples while returning valid
PE files as output. Most of the work in adversarial learning
using GP in the past focused on mobile malware [10]–[12], or
further related topics including malware evolving, PDF files
classification and Intrusion Detection Systems [5], [13]–[16].

We run our experiments using 6880 Windows PE files
and generate over 5500 malware mutations. We tested our
adversarial examples against state-of-the-art classifiers and
compared against similar work in the literature. AIMED
demonstrates that it can converge 50% faster than random
approaches and generate more robust examples that are fully
functional and able to cross-evade other classifiers with up to
80% success rate. Therefore, we aim to provide evidence that
motivated adversaries can use GP to be able to bypass state-
of-the-art malware detection within a few minutes regardless
of the classifier analyzed.



The rest of this paper is structured as follows: Section II
provides the background and related work that inspired design
decisions made and described in Section III. In Section IV we
introduce the AIMED framework and evaluate its results in
Section V. Finally, we conclude our paper in Section VI.

II. BACKGROUND

This section lays ground for the design of AIMED in
Section III by introducing related work on genetic program-
ming and adversarial learning in malware classification as
both topics are combined in AIMED to improve how evasive
malware is achieved.

A. Adversarial Learning in Malware Classification

Adversarial examples in deep learning models have been
getting a lot of traction in recent years. Early contributions
focused on adversarial learning techniques targeting Intrusion
Detection Systems algorithms to force misclassification [17].
Further research by Szegedy et al. also conducted adversarial
techniques on deep neural networks for image classification by
injecting imperceptible perturbations that mislead the model to
classify the images incorrectly [4]. Goodfellow et al. presented
a gradient-based approach that focused on neural networks’
linearity in order to generate adversarial examples [18]. Pa-
pernot et al. introduced a Jacobian Matrix that provided high
evasion results with a low rate of modification of the features
used [19]. It was able to identify which features should be
modified to generate the adversarial examples. Following the
trend on gradient based approaches, Grosse et al. trained a
feed forward neural network to bypass an Android malware
scanner [20]. Kolosnjaji et al. also proposed a method based
on a gradient attack that is capable of evading a deep neural
network classification by modifying less than 1% of the
samples’ bytes. In most of these cases, though, it is assumed
that the attacker has full knowledge of the model’s architecture
and therefore the gradient based algorithm can be applied [21].

Recent approaches have shifted the attack towards black
box models where normally no information is given regarding
architecture, weights, training samples or confidence scores.
Hu et al. proposed a GAN [22] that creates both a surrogate
model that fits the black box classifier and a second model
that emulates the generative network, which is trained to
generate adversarial samples. Once the surrogate model is
properly trained, it performs cross-evasion to the actual black
box classifier and, according to the authors, reports perfect
evasion for the samples analyzed [7]. Recently, Anderson et al.
proposed a black box attack on static malware detection based
on an OpenAI gym [23] implementation. On this approach a
RL agent is trained to inject perturbations to malware samples
and provide a reward to the model towards bypassing the
classifier. Even though the perturbations are functionality-
preserving operations the new malware mutations are not
checked whether they are valid executables and thus many
evasions can end up as corrupt files [6].

In [9] we proposed ARMED, which is capable of generating
automatic adversarial examples of a previously-known mal-

ware by injecting random perturbations until it is misclassified.
Random perturbations are useful to find single adversarial
examples timely but do not keep the performance when the
problem scales up to find several evasive mutations [9].

The malware domain is by nature a different problem
than image classification given that the input features are
no longer continuous but rather binary and unlike the image
domain, injecting perturbations into malware might render the
sample corrupt and no longer useful. Therefore, it adds a new
challenge in order to build successful adversarial examples.

B. Genetic Programming for Malware Evasion

Artificial intelligence has gone a long way since this
question attributed to Arthur Samuel was asked "How can
computers learn to solve problems without being explicitly
programmed?" [24]. To tackle that central question different
approaches were proposed and among them, the use of the
biological theory of evolution in computer science. Hence,
Holland demonstrated how evolution in nature can be applied
to solve problems using a technique called genetic algorithms
(GA) [25]. GA convert a population of individuals with its
respective fitness through operations including crossover
and mutation1 following the Darwinian principle. Combining
that approach with computer programs brings us GP, which is
an approach to automated machine learning that attempts to
evolve programs to solve a variety of problems. It has been
extensively studied for decades [24], [26]–[28].

Genetic Programming has been used in the literature to
evolve different types of malware. Noreen et al. introduced
an evolutionary framework to evolve a piece of malicious
software called Bagle [16]. Evolving is defined as changing
the behavior of the malware sample, which brings a contro-
versial approach to the discussion in malware classification
since at which extent can behavior be modified and still be
considered malicious. The scope of the study is limited to
only known variants of the same malware by testing it against
commercial security products. The main motivation seems to
be evolving malware in a way that new mutations are detected
as different variants of the same malware family. GP has also
been already introduced to evolve malware and test against
commercial security products in the mobile domain [10]–[12].
Kayacik et al. focused on evolve buffer overflow attacks to
obfuscate them [13]. Further research introduced GP to create
mimicry buffer overflow attacks with the purpose of finding
vulnerabilities faster than attackers [14]. In [15] is proposed a
comparison between white and black box attacks in intrusion
detection systems based on GP. Xu et al. introduced a method
that searches for PDF adversarial examples drawing ideas from
GP by using API calls from PE files and testing them against
PDF malware classifiers that return a classification score [5].
Recently, Calleja et al. introduced a genetic algorithm that
is able to force an Android malware classifier to misclassify
the family in the dataset by changing only one feature in the

1Note that we differentiate two types of mutations in this work by defining
genetic mutations as changes into the sequence of perturbations and malware
mutations, which are the modified malware files generated by AIMED.
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Fig. 1. AIMED workflow

original malware [29]. Nonetheless, the research is focused
on targeted attacks forcing an Android malware to be cate-
gorized under a different malware signature (family) instead
of bypassing the classifier and forcing it to label a malicious
application as benign.

It should be noted that benchmarking different commercial
products has been widely studied in the literature [30] [31].
AIMED does not follow this approach currently. We aim
to test evolving malware mutations against robust classifiers
and understand how sensitive static malware detection can
be when confronted with automatically generated adversarial
examples. Furthermore, how these samples can cross-evade
different classifiers both in research projects as well as in the
industry. GP proves to be a suitable tool as it looks for the best
evasion sequence while reducing the search space. Moreover,
unlike further machine learning methods, it does not require
previous training time.

III. DESIGN

A. PE File Injections

Windows Portable executable files were created from Mi-
crosoft to establish a way for Windows to run applications
and to store the important data needed during execution [32].
PE files are an extension of Common Object File Format
(COFF) [33], which is a format for executables introduced
on Unix systems. Modifying PE files has been of interest
in the past but the development of such tools are complex
and expensive and thus sometimes leads to less tools shared
with the community [34] [35]. Moreover, authors tend to
implement their own parser linked to a specific language.
Hence, LIEF [36] has been introduced to provide a cross
platform library that is able to parse and modify different
executable formats including PE.

We decided to implement defined [6] byte-level perturba-
tions – modifications – that can be injected to Windows PE
files. According to our experiments, we adjusted and selected
nine of the perturbations that returned the highest number
of valid malware mutations. Based on the number and order
of perturbations injected, new malware mutations can bypass
detection at the expense of its functionality, which means

perturbations often lead to corrupt files that are no longer
detected by malware classifiers. However, corrupt files are
useless in spite of whether they are detected or not. Thus,
we implement a sandbox to make sure all new mutations are
functional before checking whether they are also evasive.

B. AIMED’s Workflow

Our approach consists of eight main components and is
inspired on the algorithm displayed in Fig. 2, which sum-
marizes the genetic algorithm approach. The Manipulation
Box in Fig. 1, which will be part of Step 1 in Fig. 2, where
perturbations are injected to the malware sample in order to
create the population.

In Step 2 each member of the population will be evaluated
in terms of their fitness and receives a score. This is also
highlighted on the AIMED workflow in Fig. 1. In order to
perform the evaluation the new mutation runs through four
different stages: (a) Functionality stage implements a sandbox
to check whether the file is not corrupt and then sends it to the
next stage. (b) Detection scans every generated mutation using
commercial engines or research models to determine whether
it is malicious. Based on the results, the new malware mutation
can be: corrupt, valid but detected, or valid and evasive.
Each of the states receive a score where evasive returns the
highest value and corrupt the lowest. (c) A Similarity function
that calculates the differences between any given malware
mutation and the original file where it came from at a binary-
level representation. (d) Distance from origin stage returns
the number of current generation and is used to give more
preference to recent members of the population. All this stages
combined contribute their value to the fitness function, which
will be used in the following steps of the GP algorithm.

In Step 3, Selection, the two fittest members will be selected
to breed the next generation. During the first generation,
though, two scenarios may open. Either scores are initialized
in zero and the two first generated malware mutations will be
selected or all of the members shall have their fitness score
assigned before proceeding to the next generation, which is
the approach we decided to adopt.



Fig. 2. Standard genetic algorithm

In Step 4, called Crossover, the two fittest malware muta-
tions mate with each other and generate new children that are
more prone to result in a valid evasion.

In order to avoid getting stuck in a loop because of only
crossing-over the best members and producing the same off-
spring, random genetic mutations are added in Step 5, called
Mutation, evolving the malicious files in unexpected ways
similar to evolution in nature and all new generated malware
files are sent back to the loop to assess their fitness.

The whole process is repeated over many generations until
a number of adversarial samples is achieved or a threshold of
generations is surpassed as pictured in Step 6, which is also
highlighted as Criteria in Fig. 1. Finally, the evasive malware
mutations are displayed, which are successful in bypassing the
malware classifier.

As we can observe in Fig. 1, we adjust the termination
clause right after the fitness evaluation, specifically after the
detection stage is tested. That is basically because looking
for an adversarial example relies exclusively on having a
successful evasive mutation and hence it may provide a more
efficient result when checking earlier throughout the flow.

We implemented as a malware classifier four different
options, three top commercial scanners and one research
model: Gradient Boosted Decision Tree (GBDT), Sophos,
ESET, and Kaspersky. Given that Kaspersky proved to give
a good performance by detecting a high number of initially
sampled malware mutations, we decided to test AIMED using
it extensively in order to obtain more robust adversarial
examples to eventually cross-evade the other three classifiers
in what could be a more realistic scenario. Nonetheless, we
set holdout samples for each classifier and tested against each
other to compare the impact of evasive mutations among
different black box classifiers.

IV. AIMED FRAMEWORK

A modified version of a malware analysis environment
[37] is implemented to act as the local sandbox. In a first
implementation, we started tagging new malware mutations
as functional very cautiously to avoid false positives. The

malware analysis environment tracks how the sample behaves
and gives us different structure metrics including a score based
on malware behavior and time processing. We determined
that corrupt files usually return shorter than average process
times and malicious scores close to zero. However, in a later
implementation we removed this condition because it was
leaving out potential candidates and improved the functionality
test by implementing a dedicated system without the need to
run all sandbox’s components.

As malware classifiers, both top commercial [1]–[3] and
research machine learning models [6] are used. According
to the authors of the latter, the research model was trained
using 100.000 benign and malicious files and reports a ROC-
AUC score of 0.993. We implemented a threshold of 0.9 that
corresponds to a 90% true positive rate while keeping a 1%
false positive rate.

Additional API modules are also available in AIMED
to implement malware engine aggregators (e.g., VirusTotal,
Metadefender) in case that a pool of engines is meant to be
tested simultaneously. Note that these options may require
premium services and can increase the processing time to
several minutes per generation and thus were not adopted in
these experiments.

The whole process including generating a new malware
mutation and sending it through the sandbox and detection
stages take currently between 15 – 30 seconds. That means,
the GP algorithm needs to be implemented in a way where
only the most relevant mutations need to be processed.

A. Genetic Programming

In order to optimize the efficiency of our approach, different
steps need to be taken: (1) Search for an optimal population
number. Small populations are faster in the first generation but
provide only a limited number of genes to start with, whereas
for larger population numbers a more diverse first generation
can increase the probability of a strong generation afterwards.
(2) While duplication is not allowed in the first generation,
it is later in the process, which means diversity decreases.
In our approach, change is not implemented adiabatic as
new members are created while older are not always killed
or replaced. Instead, the fittest members along with its off-
spring pass through the next generation. (3) Next generation’s
offspring can lead to repeated genes as the fittest members
might continue for several generations as parents. Thus, to
avoid duplicated members to perpetually remain as the fittest
candidates, we added a control mechanism to swap those with
the same fitness value but different sequence of perturbations.
That will help to increase diversity in the population of every
generation.

Moreover, genetic mutation rates should be further studied
to determine optimal values along with the size of population.
Our experiments have shown that relatively low mutation rates
(e.g., 10%) are enough to outperform random algorithms con-
vergence rates. In the current implementation this parameter
can be specified at the beginning and depending on its value
it will bring further diversity to the next generations.



Algorithm 1 Finding evasive malware mutations with GP
Functions:

S: Selection;
C: Crossover;
M: Mutation;

Input:
Input malware b ∈ B∗;
Byte-level perturbations δ;

1: bi ← B∗

2: b′i ← bi + δ
3: while True do
4: for f(b′i) = 1 do
5: if d(b′i) < 0.9 then
6: return b′i
7: end if
8: end for
9: b′s ← S(λ(b′i))

10: b′i+1 ←M(C(b′s))
11: if g > γ then
12: return Ø
13: end if
14: end while

However, the higher the mutation rate is the closer to a
random approach the GP results will be.

B. Formalization

As per [38] we formulate the problem and formally define
the notation as follows. A PE is composed by a sequence of
bytes b with length n where b = (b1, b2, ..., bn) and bi ∈ B
for all 1 ≤ i ≤ n. B∗ is defined as finite sequences of B
and thus b ∈ B∗. The classifier, or malware scanner, is used
to label an input file as benign or malicious and is defined
as d : b ∈ B∗ = {0, 1}. The output is considered malicious,
labeled as 1, in case it’s greater than 0.9 for the GBDT model.
We define as f : b ∈ B∗ = {0, 1} the function to determine if
the functionality of b is preserved. The sandbox returns 0 for
corrupt and 1 for valid malware mutations.

A perturbation, denoted by δ, is a specific modification
injected into any given malware resulting in a modified sample
b′ called malware mutation. In order to be successful, or
evasive, a malware mutation needs to be classified as benign
so that d(b′) < 0.9. Thus, misclassification is achieved.

C. Genetic Operations

On AIMED we have implemented genetic operations using
the Darwinian principle of natural selection. Crossover is
according to the biological model when genetic material is
exchanged to form a new recombinant. In our case we select
the fittest members and define a point in the sequence to
swap them and create two new children. Mutations change
the genetic code and are used in nature to improve diversity.
Occasionally they could be helpful to achieve fittest members.
We randomly exchange some perturbations for others in order

to affect the sequence. Reproduction, also cloning, is making
one member survive over the next generation. Although it is
recommended [39] to allow a small number of the population
to reproduce, it can have a significant impact on the time
required for the GP as fitness score function does not need
to be recalculated. In our scenario, we allow it for between
10% – 50% of the population, depending on the population
size, to speed up the process without compromising diversity.
Selection is implemented using fitness-proportionate style,
where members are selected based on fitness compared with
the entire population.

D. Fitness Function

The fitness function uses four components to determine the
best members of each generation and it can be formally defined
as λ in Equation 1:

λ(b′) = f(b′) + d(b′) + θ(b, b′) + gb′ (1)

where θ(bi, b′i) is a function that compares the new malware
mutation with its original sample and compute a similarity
number. The greater the number is, the better we expect the
diversity between the two samples will be when searching
for an adversarial example. Though, this might not always
be preferred as for some cases we could want to have a
close relative of another adversarial example instead of a more
different one. Nevertheless, this method will give preference
to find faster valid over corrupt mutations while searching
thoroughly for evasions afterwards. Finally, the current number
of generation is denoted with g and is added into the fitness
function to give priority to newly generated members on the
selection process.

Therefore, finding a potential evasive mutation ei ∈ B∗ can
be approached by maximizing a function (Eq. 2) that receives
as input a malware file, bi ∈ B∗, and maps it to an optimal
sequence of δ, which satisfies b′i = bi + δ:

e = argmax

γ∑
i=0

λ(b′),∀b′ ∈ B∗ (2)

where γ is the threshold of generations expected to run until
the number of adversarial malware examples is found.

V. EVALUATION

In the evaluation we discuss the results by comparing the
efficiency of AIMED with a random perturbation injection
system and an OpenAI gym model implementing a RL agent.

As input we used 6880 malware files and deployed them
into the system, which is randomly picking a sample for
each round and injecting a sequence of perturbations. The
idea is to start creating a pool of four mutations with
10 perturbations added each. That will be the initial popula-
tion. Then we evaluate the fitness score using a combination of
the four previously described methods: functionality, detection,
similarity, and distance from origin or generation. The sum of
these components constitutes the fitness function (Eq. 1) that
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we want to maximize as presented in section IV-D. We will
be running individual original samples as input every round
and expect between one and two evasions for every run. We
set a limit of 10 generations, which usually takes between
1 – 4 minutes depending on how fast the algorithm converges
mostly based on the classifier used. That means, if we don’t
find any evasion after that number of generations we declare
the original sample as ’unmodifiable’ and move on to the next.

A. Comparing to OpenAI Gym Model

OpenAI gym is a framework that became widely used to
train RL agents mostly in the gaming environment. Anderson
et al. implemented it as a malware evasion environment
and adjusted the framework to be able to generate malware
mutations using a RL agent [6].

They add modifications sequentially to each new sam-
ple in a round until an evasion occurs or the threshold of
10 perturbations is achieved. According to the study, with
50.000 perturbations 2085 evasions are achieved. Moreover,
an evasion rate is reported of 24% for the 200 holdout group.

Given the nature of GP and that we are not adding each
perturbation sequentially one after the other, we do not use
a budget of perturbations as metric. Instead, we take the
number of malware mutations generated based on the files
sampled, ergo, in our experiments we used 1253 files as
original malware bi. After more than hundred generations,
AIMED created 5551 new malware mutations. From those,
2954, more than half, were corrupted and thus dismissed.
2076 were built correctly and valid but detected by the given
classifier, and finally 521 were adversarial samples, which
means valid and evasive. This experiment points out how
important it is to make sure evasive files are valid as 53%
turned out to be corrupt. Furthermore, in 299 cases AIMED
successfully delivered valid and adversarial examples, close
to 24% of all the input files, which is similar to OpenAI
gym’s RL agent rates but with the addition of having fully
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functional adversarial examples and the fact that the result
combines detections of four scanners. This proves AIMED’s
robustness to bypass detection regardless of the malware used
as input or the classifier set as target.

Note that the OpenAI gym methods using the RL agent are
tested against a different set of samples than AIMED as the
training data has not been published. However, we also focused
on Windows PE malware files and would expect similar results
in case we have access to the same pool of samples.

B. Comparing to ARMED

ARMED is able to generate evasive malware mutations by
injecting random binary-level perturbations. However, random
perturbations are useful to find single adversarial examples
but limited if the output of samples required increases as it is
brute-forcing the system in order to find a suitable sequence
of perturbations to bypass the classifier.

We calculate in Table I what is the ratio of corrupt files
in malware mutations generation. Based on the percentages
reported, we observe that generating batches of, for instance,
9 mutations are in average one of the best ratios as less
than 23% of the malware mutations generated are corrupt
whereas for a batch of 10 around 30%. Conversely, for both
cases AIMED is generating 70% and more of valid malware
mutations. Therefore, we chose 10 as the size of our batch to
start generating adversarial examples.

Functionality and detection stages times were reduced by
half as one round in ARMED used to take around 60 s and one
generation in AIMED takes in average at most 30 s. Our ex-
periments also showed that using pre-trained classifier models
such as GBDT reduce the processing time to milliseconds and
the adversarial rates are comparable to commercial classifiers,
which cuts the whole generation processing time to less than
15 s per generation. A committed adversary can then leverage
these adversarial examples and look for cross-evasion against



TABLE I
RATIO OF CORRUPT MALWARE MUTATIONS (%)

Mutations ARMED AIMED
1 3,000 2,000
2 1,500 1,000
3 1,333 1,667
4 1,250 0,750
5 1,400 1,000
6 1,833 0,500
7 1,286 0,571
8 1,875 0,500
9 1,889 0,222

10 1,800 0,300
11 1,364 0,455
12 1,750 0,250
13 1,923 0,462
14 1,786 0,500
15 1,600 0,333
16 2,313 0,750
17 1,941 0,353
18 2,000 0,278
19 1,368 0,474
20 2,050 0,450

commercial scanners as showed in Tablet II without the need
to target them specifically.

C. Cross-evasions

Based on the detection rates we chose top performing
malware classifiers both from the industry and academia. We
performed tests using one classifier to find evasive malware
mutations and then scanned the latter with other malware
detectors in order to evaluate cross-evasion properties of the
adversarial examples generated.

As presented in Table II, we grouped the adversarial exam-
ples found by AIMED for each of the classifiers and run them
against each other. Our experiments show that cross-evasion
is achieved with relatively high rates among commercial
classifiers. For example, running AIMED with ESET will
generate adversarial examples that bypass Kaspersky 66% of
the time. Moreover, using the GBDT model, it can create
adversarial malware that will be misclassified more than 80%
of the time by Sophos. Conversely, more than 42% of the
samples generated against Sophos will also bypass the GBDT
model. This proves that AIMED can efficiently find evasions
for Windows PE files that are particularly successful among
different classifiers.

All scanners were tested using static detection with default
configurations in the following versions: Kaspersky 19, ESET
NOD32 Antivirus 11, and Sophos Endpoint Security 10.8
up-to-date at the moment when experiments were performed.

D. Limitations

Even though having valid adversarial examples against a
variety of classifiers proves to be feasible within just a few
minutes, the number of input files targeted as ’unmodifiable’
is still high, around 76%. An adversary will still need to
face a fundamental tradeoff between increasing the time spent

TABLE II
CROSS-EVASION RATE AMONG CLASSIFIERS

Kaspersky ESET Sophos GBDT
Kaspersky 100% 18,39% 49,69% 25,47%

ESET 66,02% 100% 69,90% 38,83%
Sophos 41,74% 42,15% 100% 42,71%
GBDT 38,46% 48,07% 82,69% 100%

waiting for a successful evasion automatically or finding it
manually. This is certainly an interesting area to gain a better
understanding about how to convert unmodifiable files into
modifiable ones.

While this approach focus on generating adversarial exam-
ples for static malware classifiers, bypassing dynamic classifi-
cation by automatically modifying the samples’ behavior still
remains an open issue. A potential line of research is to explore
further perturbations that preserve the semantics of malware
files while covering malicious behavior by understanding
each of the actions. These perturbations combined with the
presented techniques can be further studied when generating
adversarial examples that attempt to bypass more security
layers.

VI. CONCLUSION

Here we present AIMED, which aims to generate valid
adversarial examples applying GP algorithms to previously
detected malicious software in order to find optimal sequences
of perturbations to bypass a malware classifier.

As comparison, results from the GP algorithm are compared
with those of a previous model that only generates random se-
quences of perturbations to be injected into detected malware.
Evolving them to bypass static malware detection is possible
and, depending on the parameters and classifiers used, it can
take only a few minutes to be successful.

Experimental results proved that while for small number of
evasive mutations the random algorithm performs successfully,
the GP algorithm displays more competitive results for larger
numbers. Investigations also showed that if 10 valid evasive
malware files are to be generated, AIMED returns results
in average at least twice as fast as its random-counterpart.
Evasion rates are similar to other frameworks while making
sure all adversarial examples are valid PE files. Furthermore,
adversarial examples generated with AIMED using a given
malware classifier can be successfully leveraged against other
models with high cross-evasion rates.

Therefore, GP seems to be a relatively simple yet powerful
option to create adversarial examples of malware files that are
able to evolve in such a way inspired by the Darwinian process
and able to bypassing malware classifiers.

Finally, some lines of future work will include a deeper
understanding on how to make more input files modifiable
as well as extending the machine learning approach beyond
GP. Moreover, AIMED can be used to test and assess new
adversarial learning defenses in malware classifiers.
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