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Abstract. Machine learning models have been widely implemented to
classify software. These models allow to generalize static features of Win-
dows portable executable files. While highly accurate in terms of clas-
sification, they still exhibit weaknesses that can be exploited by apply-
ing subtle transformations to the input object. Despite their semantic-
preserving nature, such transformations can render the file corrupt. Hence,
unlike in the computer vision domain, integrity verification is vital to
the generation of adversarial malware examples. Many approaches have
been explored in the literature, however, most of them have either over-
estimated the semantic-preserving transformations or achieved modest
evasion rates across general files. We therefore present AIMED-RL, Au-
tomatic Intelligent Malware modifications to Evade Detection using Re-
inforcement Learning. Our approach is able to generate adversarial ex-
amples that lead machine learning models to misclassify malware files,
without compromising their functionality. We implement our approach
using a Distributional Double Deep Q-Network agent, adding a penalty
to improve diversity of transformations. Thereby, we achieve competitive
results compared to previous research based on reinforcement learning
while minimizing the required sequence of transformations.
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1 Introduction

Malicious software, known as malware, has been a prevalent digital threat. Large
efforts have been conducted to correctly and efficiently detect malicious appli-
cations using Machine Learning (ML) [1,2]. However, ML models can be fooled
by tricking the classifier into returning the incorrect label [3]. Subtle transfor-
mations, referred to as perturbations, inserted into the file can be responsible
for misclassification. For this reason, the generation of adversarial malware ex-
amples has become an intensive area of research in the last decade [4]. Unlike in
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the computer vision domain, where images can be randomly modified with ad-
versarial perturbations, Windows Portable Executable (PE) files can lose their
integrity and functionality following a series of too many or strong injections [5].

Recent advances have shown that ML-based malware classifiers report weak-
nesses when confronted with gradient-based attacks [6]. Generative Adversarial
Networks (GAN) were also successful in generating adversarial examples. In this
case, a surrogate model was trained based on the target malware classifier. Both
approaches rely heavily on feature-space adversarial examples, thus merely pro-
ducing a representation of the input object rather than a real file [7,8].

Conversely, further research has been looking at the problem-space on the
Windows platform. Anderson et al. [9] were one of the first to show that reinforce-
ment learning (RL) can be successfully used to generate adversarial examples
in the problem space for Windows PE. Yet, the use of semantic-preserving per-
turbations can still lead to corrupt adversarial examples. Hence, an integrity
verification is paramount to ensure functionality. Further approaches, including
Labaca-Castro et al. [10], explored Genetic Programming (GP) with integrity
verification that outperforms similar strategies without rendering the files cor-
rupt. However, the inherent issue of getting stuck in local-minima may prevent
the system from finding the best sequence of adversarial transformations.

We, therefore, present AIMED-RL: Automatic Intelligent Malware modi-
fications to Evade Detection with Reinforcement Learning. This approach com-
bines integrity analysis with improved reinforcement learning techniques. We
assume that an attacker use a toolbox with a set of transformations, which can
be injected into an original malware file and prevent a ML-based model from
properly classifying it as malicious. Our approach shows that RL can be imple-
mented to increase the success rate of such attacks against malware classifiers
and is able to outperform previous research in the field by significantly reduc-
ing the efforts. This paper is structured as follows: In §2, we take an extensive
look at the existing literature about adversarial machine learning in the malware
domain focusing mainly on RL. Next, we describe the methodology in §3 and
illuminate the design of our reinforcement learning approach. In §4 we present
the results and further explores the experiments conducted. Finally, we conclude
this work with a short summary in §6.

2 Related Work

Here we evaluate the existing literature about adversarial machine learning in
the malware domain. We discuss related research and elaborate on the current
state of the field.

2.1 Reinforcement Learning

Reinforcement learning has become an increasing area of scientific interest in
the past decade. The usage of RL has extended beyond traditional applications
and entered new fields, such as networking and security [11,12,13,14].
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One of the first attempts to generate adversarial malware examples using
RL was presented by Anderson et al. [9]. The authors implemented ten different
perturbations designed to be semantic- and functionality-preserving; that is, they
do not negatively affect the structure of the actual code. A maximum budget
of ten turns, equivalent to ten injected perturbations, was allowed before the
attempt was cancelled and the next episode was started. The reward function
only consisted of the detection result by the classifier, where 0 stands for a
detected file and 10 for an evasive. The environment was based on the OpenAI
gym framework [15]. The article reports an evasion rate of up to 24%, and
an average rate of 16.25% over 200 holdout malware examples. According to
the authors, the results must be seen as modest in comparison to white-box
based gradient attacks or grey-box attempts. Although the perturbations were
intended to be functionality-preserving, they did, in fact, hamper the integrity
of the adversarial examples since no integrity verification took place.

Building on the same idea, Fang et al., [16] undertook a similar approach
using different parameters. The state input was reduced to 513 dimensions and
consisted only of byte and entropy histograms. The authors assumed that a
smaller and thus more comprehensive input could simplify the training of the
agent. The action space was also decreased to four actions, which were expected
to maintain improved functionality-preserving properties. A value-based Dou-
ble Deep Q-Network (DDQN) was trained. In addition, it is reported the use
of integrity verification to validate that the created examples remained func-
tional [17]. An evasion rate of 46.56% was reported, which can be considered a
strong improvement compared to previous approaches. However, the use of 80
injections based on only four different perturbations could potentially make it
easier to detect and identify files that have been respectively modified.

Fang, Zeng, et al., [18] criticized that previous work [9] claimed to use a black-
box scenario, while using the same feature-space for the reinforcement learning
agent as well as for the detection engine, resembling more a grey-box attack.
To avoid this problem, they trained their own classifier to detect PE files using
2,478 dimensions. Still, it remains unclear if this solves the issue since attackers
usually have domain knowledge and could be able to anticipate which features
are likely to be used by a static malware classifier. They further suggested that
the high amount of randomness in the perturbations used in previous work [9,16]
could lead to instability during the training process. Instead of picking an import
function at random, for instance, they crafted an individual perturbation for each
import function. These alterations led to a significantly increased action space
with 218 dimensions, which raises the question about whether the agent is able
to explore the possible states satisfactorily and register the small differences
between the many individual perturbations. A DDQN model in combination
with a Dueling DQN (DuDDQN) was implemented and the agent was trained
for 3,000 episodes, which then reported an evasion rate of 19.13%.
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2.2 Further Approaches

In a stochastic approach [5] perturbations were randomly injected into the mal-
ware to explore the potential of automated malware manipulation. An integrity
test was implemented using a sandbox [17] to check whether the malware is still
functional after the injections. It was reported that an increasing number of in-
jected perturbations reduced the number of functional examples considerably,
ranging from 50% functionality for three injected perturbations to only 7.5% for
25. Overall, 18% of manipulated files were reported to be functional on average.
The detection was tested by malware scanners on VirusTotal [19]. The best ma-
nipulated and functional examples achieved a reduction in the detection rate by
about 80%. Interestingly, examples using only five perturbations showed similar
results as those relying on an extreme number of 500 perturbations. Moreover,
the length of the perturbation sequence proved to be less important than the
order of the injected perturbations. However, the approach was slow to find
adversarial examples when scaling and, hence, optimization techniques will be
needed to improve efficiency.

To address the limitations discussed, another strategy was proposed [10].
This time, a genetic programming algorithm was implemented to find adversarial
malware examples. Unlike reinforcement learning, this technique does not require
any training time. The fitness function was composed of four parameters, namely
functionality, detection, similarity (to the original file on byte-level) and distance
(number of generations). Compared to previous approach [5], the current solution
was significantly faster, thus requiring less processing time to create files. It
also produced fewer corrupted, non-functioning examples. Probing the functional
examples against four classifiers, evasion rates of about 24% were reported.

In [20], another similar genetic programming approach to evade static detec-
tion was introduced. In this case, the authors only used two perturbations, both
of which were meant to be functionality-preserving by design. They, therefore,
did not employ an integrity step to check the generated examples for function-
ality. The perturbations were padding (adding bytes at the end of the file) and
section injection, which were previously used by Anderson et al. and Labaca-
Castro et al., among other perturbations. By removing the functionality check,
the process of generating adversarial malware was sped up significantly, thus
avoiding the most limiting factor regarding the performance in previous ap-
proaches [5,10]. However, no evidence was presented to confirm the function-
ality of the malware, as the files did not appear to be verified a posteriori. In
fact, the original perturbations used in [9] were also declared to be functionality-
preserving, but turned out to produce corrupted malware as it was acknowledged
in the article. Nonetheless, the authors reported that the approach managed to
evade, on average, a considerable amount of 12 commercial classifiers.

3 AIMED-RL

In this section, we present how the experiments using reinforcement learning
for adversarial malware have been designed. We start providing the theoretical
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context and continue defining the experimental settings and environment of our
approach.

3.1 Framework & Notation

The idea behind reinforcement learning is to find the best decision or action
for a given input state. Because every state will be linked to a certain reward,
a machine learning model based on reinforcement learning is programmed to
maximize this reward over a sequence of states. The entity that is deciding
and executing the actions is called agent in RL-terms. By exploring a lot of
possible states over the course of many episodes, the agent will eventually learn
to link actions and states to some amount of reward. After the exploratory
training stage, it should now be able to perform the best possible action for each
state, leading to the highest reward. This process can be formalized as a Markov
Decision Process (MDP), consisting of a 4-tuple:

MDP := (S,A, γ,R(S,A)) (1)

For S being a finite set of possible states, A the set of possible actions, γ a
discount factor for future rewards and R(S,A) the reward function. A transition
from one state to another can formally be described as:

(st, at, rt+1, st+1) (2)

This makes clear that for every timestep (turn) t an action has to be chosen by
the agent to transition to the next state s. The rule by which the agent decides
which action to take is called the policy of the agent. It can be formalized as a
probability distribution over the available set of actions given a certain state:

π(a|s) = P [At = a|St = s] (3)

It is necessary to describe the policy of the agent as non-deterministic, because
it has some random component in the training stage.

After all, the most important goal in reinforcement learning is for the agent
to learn a (near) optimal policy.

Q-learning and Deep Q-learning Q-learning has already been introduced in
the early 1990s [21]. Following the reinforcement learning process described in
Eq. 1– 3, it becomes clear that each different state has its own value determined
by its current reward and the possible future reward that the next states can
deliver. The function that ascribes these values to the state is called the value
function V (s). However, for practical reasons, it is simpler to consider the actions
associated with the state transitions. This relation is defined by the eponymous
Q-function:

Q(s, a) = r(s, a) + γmax
a′∈A

Q(s′, a′) (4)
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The discount factor γ controls hereby, how much the agent is grinding for a
long-term reward (high value for γ), or is just greedily considering the current
reward (low value for γ). This means that the Q-value is the expected discounted
reward for executing action a at state s and following policy π thereafter [21].

To track and update the Q-values, they have to be stored together with
their associated state and action pair. In a simple case, with only few states and
actions available, a 2D table can be used to accomplish the task. This approach
can be regarded similarly to dynamic programming. Even if one only stores the
visited and thus relevant states, complexity and storage limits are exceeded very
fast. The application of deep neural networks allows to handle this problem.

Instead of directly calculating the Q-values and storing them, a deep neural
network with weights θ can be used as a non-linear function approximator. The
network can be trained by minimizing the loss function L(θ) over the course
of training episodes with stochastic gradient descent. The size of the output
layer of the network must match the number of possible actions. This mimics
a supervised learning process, where the reward defines the labeled data for
a state. The network has to learn to predict these rewards correctly in order
to minimize the loss function. From these predictions, the optimal actions to
achieve the highest reward can eventually be inferred [22].

3.2 Experimental Setting

Attacker Knowledge Following previous work [4,23], training data knowledge
is defined by D and feature set X , algorithm g, and hyperparameters w.

Limited Knowledge (LK) Based upon θLK = { D̂ }, attackers can query the
model in unlimited fashion and receive binary outputs labelling the adversarial
examples into malicious or benign. Moreover, they could also transfer the results
of the queries into a surrogate classifier in case the attackers have additional
knowledge of the learning algorithm and feature set θLK = { D̂, X̂ , ĝ, ŵ }. In our
scenario, the LK capability fits the situation appropriately since the agent is
only able to assign a reward based on the output of the classifier. None of the
underlying architecture from the model nor its training set are relevant for the
attackers.

Target Model A LightGBM [24] model is implemented, which was trained on
600,000 benign and malicious software files. In terms of performance, the model
scores an ROC-AUC of 0.993 [9]. After analyzing an input file, the classifier
returns a value between 0 and 1 for benign or malicious examples respectively.
Ergo, a larger value corresponds to a higher confidence in the examined file
being malicious. As used in the literature [9,5], for the evaluation, we keep the
threshold set to 0.9 to label a file as malware and, hence, be able to benchmark
performance against different approaches. Regarding the training stage however,
we decided to lower the confidence rate to 0.8, providing a bigger challenge for
the RL agent. Note that this threshold is only known to the detection model and
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is not used by the RL agent, in order to keep the characteristics of a black-box
scenario and attack.

Injection strategy Within the literature, a number of publications used vary-
ing numbers to define the maximum of allowed perturbations for the agent,
ranging from 10 [9] to 100 [18]. However, in [10] the authors suggested that a
smaller number of around five perturbations showed similar results and that
the order of perturbations could be more relevant than the actual quantity. We
therefore limited the number of allowed injections to five perturbations.

Furthermore, we introduced an additional reset strategy to enhance the idea
of order matters more than numbers. Our environment is allowed to reset the
malware example back to its original state if the classifier is still able to detect
it after five perturbations. This allows the agent a second shot at the same file,
if the first attempt failed to successfully generate an adversarial example.

3.3 Environment

State The state input for the agent presented by the environment consists of
both, handcrafted PE features extracted from the bytes of the binary file as
well as structure-agnostic byte(-entropy) histograms. To extract the PE-specific
information, the LIEF library [25] is employed. The state relies on the feature
space defined by [9]:

PE-specific features i) Metadata from PE header file information (62 dim.):
Extracted features from the PE header, such as OS information, linker version
or the magic number. ii) Metadata about the PE sections (255 dim.): Stores
information about section names, sizes and entropy. A hash function is used to
compress these values into 255 dimensions for every PE file. iii) Metadata about
Import Table (1280 dim.): Contains information about the names of imported
functions and libraries in the import table of the data directory. The names are
stored up to a maximum amount of 10,000 characters. iv) Metadata about Export
Table (128 dim.): Stores the names of exported functions. The length of the
stored value is also limited to 10,000 characters. v) Counts of human-readable
strings (104 dim.): Counts the number of certain strings like URLs (https),
registry entries (HKEY ) or paths (c:/ ), and creates a histogram that stores
the distribution of characters within the strings. vi) General file information (10
dim.): General metadata about the file. For instance, whether it has a debug
section or a signature, and the length of export and import tables. It also stores
the size of the whole file.

Structure-independent features i) Byte histogram (256 dim.): Creates a histogram
with byte occurrences over the whole binary file. ii) 2D byte-entropy histogram
(256 dim.): To compute the byte-entropy histogram, windows with size 2048
bytes are slided over the raw bytes from the file with a step size of 1024 bytes.
For every block created in this way, the entropy is calculated as the base 2



8 Labaca-Castro et al.

logarithm of the bytes in the block. After that, the byte-entropy histogram is
created with these computed values and flattened into a 256 dimensional feature
vector. The method is based on the work by [26]; this original work used both a
smaller window (1024 bytes) and step size (256 bytes) than applied here.

Both, PE-specific and structure-independent information sum up to a 2,351
dimensional feature vector.

Reward The reward is one of the most important aspects of the environment, as
it directly influences the policy of the agent. In our implementation, the reward
consists of a linear function of three individual parameters. We hereby decided
to set Rmax = 10 as the maximum reward for each.

In [9], only detection Rdet was used to calculate the reward R, returning
Rdet = 0 for detected and Rdet = 10 for adversarial examples.

More recent approaches [5,16,18], also included the distance Rdis from the
original file in their reward function. Rdis is expressed by the number of turns
that have passed. We multiplied it with a factor that gives the maximum number
of allowed perturbations tmax = 5 the highest reward. Thus we incentivised our
agents to use our domain knowledge that five perturbations seem to be the most
promising in terms of evasion and functionality. Rdis can therefore be defined as
follows:

Rdis =
Rmax

tmax

∗ t (5)

This work further includes the similarity Rsim of a manipulated file com-
pared to the original one for the reward function, which is inspired by a genetic
programming approach [10]. The similarity value is calculated based on a byte-
level comparison of the two respective files. A bigger distance between the two
files results in a larger value, leading to a higher diversity caused by the injected
perturbation.

Given that the value can vary within a larger range, we decided to calculate
a ratio between the modified file size, Smod, and the original, Sorig, aiming
to maintain consistency across the adversarial examples. Based on empirical
examination, we determined that a percentage value of Sbest = 40% should work
best to create the most promising modifications. That is why we calculated Rsim

according to the difference to this value:

Rsim = (1− |Sbest −
Smod

Sorig

|) ∗Rmax (6)

In order to be able to tune the model based on importance of each parame-
ter, we introduced weights, ω, for each of the rewards. We therefore present the
different weight distributions in Table 1.

The following equation summarizes the reward, R, for our environment:

R = Rdet ∗ ωdet +Rsim ∗ ωsim +Rdis ∗ ωdis (7)
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Table 1. Weight distribution strategies for the reward function. Standard sets the same
weight to each parameter whilst Incremental shifts the attention towards detection.

Rdet Rsim Rdist Strategy

0.33 0.33 0.33 Standard

0.50 0.20 0.30 Incremental

We have established that agents tend to inject the same perturbation repeat-
edly and, thus, we introduced a penalization to the reward function. The change
consists in a reward penalty if the agent uses duplicated perturbations, ρ, within
the same file:

R =











R for ρ = 0

R ∗ 0.8 for ρ = 1

R ∗ 0.6 for ρ > 1

(8)

Actions The agent’s task is to decide on each turn which perturbation should
be injected into the PE file. The actions are injected sequentially, so that every
turn builds on the modified file from the previous injection. The perturbations
injected [9], with the exception of identity and create new entry point, which
were left out because of technical problems [5], are described as follows: i) over-
lay append : Appends a sequence of bytes at the end of the PE file (overlay);
length and entropy are random. ii) imports append : Adds an unused function to
the import table in the data directory. The function is chosen randomly from
a predefined list of DLL imports. iii) section rename: Manipulates an existing
section name. For all section perturbations the section name is chosen at ran-
dom from a list of known benign section names. iv) section add : Creates a new
unused section in the section table. v) section append : Appends bytes at the
end of a section. The length and entropy of the injected bytes is again chosen
at random. vi) upx pack : Uses the UPX [27] packer to pack the whole PE file.
Note that the compression level (between 1 and 9) is also chosen at random.
vii) upx unpack : Unpacks the file using the UPX packer. viii) remove signature:
Removes the signer information in the certificate table of the data directory.
ix) remove debug : Manipulates the debug information in the data directory. x)
break optional header checksum: Modifies and thus breaks the optional header
checksum by setting it to 0. Note that the first six perturbations use random-
ization. The implications of this have already been discussed in section §2.1.

Agent While an Actor Critic model with Experience Replay (ACER) has been
used [9] as a policy-based approach for generating adversarial malware exam-
ples, it has been shown [16,18] that value-based networks are also suited for RL
problems in the malware context. Hence, we implement Deep Q-Networks with
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additional enhancements [28] that account for data efficiency and performance
as can be observed in Table 2.

Table 2. Overview of RL-based approaches and its parameters. While related work
implemented ACER, DDQN and Dueling DDQN (DuDDQN), we use a Distributional
DDQN (DiDDQN) agent and Noisy Nets as exploration strategy.

Approach Agent Optimizer D. Factor Exploration

Fang et al., 2019 DDQN Adam 0.99 ǫ− greedy

F., Zeng et al., 2020 DuDDQN RMSProp N/A Boltzmann

Anderson et al., 2018 ACER Adam 0.95 Boltzmann

AIMED-RL DiDDQN Adam 0.95 Noisy Nets

Our experiments with baseline DQN showed a concentrated distribution of
Q-values whilst Distributional DQN allowed more precise decisions and improve-
ments in the learning process.

Instead of a regular DQN, we used a Distributional DQN [29] with two hidden
layers and 64 nodes each and Vmin = −10, Vmax = 10, Natoms = 51 that focus
in learning the distribution of rewards rather than the expected reward value.

In addition, we implemented a Double DQN [30], which is a well-known
extension to Q-Learning that solves the problem of action-value overestimation.
The neural network uses Adam [31] as optimizer with the following parameters:
α = 0.001, β1 = 0.9, β2 = 0.999 and ǫ = 0.01. Another enhancement was to
apply prioritized experience replay [32] with α = 0.6, β0 = 0.4, betasteps =
tmax ∗ episodes, capacity = 1, 000, instead of usual replay buffers. This allows
to select episodes from the replay buffer with higher information for the agent
more often, which leads to a more efficient training process. For exploration, we
chose Noisy Nets [33] with σ = 0.5 since it allowed for better exploration of the
action space and more diversified transformation vectors.

4 Experimental Results

In this section we discuss the results from the experiments. Motivated by limita-
tions from previous work, we focus on answering the following research questions:

RQ1: Is it possible to increase diversity in the sequence of adversarial pertur-
bations? (§4.1)

RQ2: Can RL-based agents efficiently learn to evade malware classifiers with
shorter sequences of perturbations? (§4.2)

During the training stage of our agents, we sampled 4,187 portable executable
files from VirusShare [34]. The experiments have been evaluated on a holdout set
of 200 malware examples that were not included in the training set. The integrity
is verified by executing the adversarial example in a protected environment [17].
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Fig. 1. Usage of perturbations of best agent to create adversarial files. While two
perturbations are particularly dominant, a broad range of actions can be observed.

4.1 Diversity of Perturbations

As we can observe in Figure 1, the agent employs a broad variety of perturbations
throughout the evaluation to generate adversarial examples. In line with previous
research [9,18,20], upx pack turned out to be the most dominant perturbation
in our environment.

Table 3. Comparison of evasion rates among agents using two different strategies:
incremental and standard weights with (WP) and with no penalty (NP). An additional
set was included to compare RL-based agents with random results.

Strategy Episodes Avg. Evasion Best Agent

Incremental (WP) 1000 23.52% 40.00%
1500 20.35% 33.84%

Incremental (NP) 1000 18.78% 30.81%
1500 23.06% 35.35%

Standard (WP) 1000 21.07% 35.86%
1500 26.29% 43.15%

Standard (NP) 1000 21.6% 30.0%
1500 23.74% 41.41%

Random Agent — 21.21% 24.62%

Since packing strongly impacts the structure of the file and this is an impor-
tant feature for static malware classifiers, its dominance over other perturbations
appears reasonable. In fact, packing is a common practice amongst commercial
(benign) software vendors to obfuscate their code or to reduce the size of their
executable files. Further research [20] suggests that these kind of perturbations
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(i.e., packing) increase the probability of a file to be flagged as malicious. How-
ever, from the classifier perspective, considering compressing with UPX packing
a malicious behavior itself would necessarily increase the number of false-positive
results and is therefore not encouraged. At this point, we must note that some
attacks will always be more prominent and, therefore, we advise to focus on the
diversity of perturbations instead of concentrating on the most dominant. Most
of the agents created used heterogeneous sequences of perturbations, indicating
the success of our enhancements to the environment.

While some transformations may be more prevalent, others may be flagged
by security techniques such as pre-analysis. For instance, overlay append can
indeed be a strong sign of a modified, probably malicious, file. For a benign
PE it would be unusual to have bytes randomly appended after the overlay,
as these would only increase its file size without adding any value. Packing or
unpacking the file before presenting it to the ML-model could also be applied as
a pre-analysis technique to avoid packers to fool the classifier.

4.2 Evasion Rate

In Table 3 we observe the comparison of evasion results among agents taking into
account different strategies. In each case, 10 agents were trained for 1000 and
1500 episodes respectively. A random agent has also been added to compare the
generation of adversarial examples with the use of reinforcement learning. Note
that some combinations of perturbations can render the adversarial examples
corrupt. These files were excluded from both the training and the evaluation sets,
resulting in non-uniform values for some evasion rates. While the best average
evasion rate improvement scores 7%, the best agent is improved by more than
20%. Both weight distributions returned agents that scored significantly better
than a purely random approach. The best agents, however, were trained with the
help of our reward penalty strategy. In fact, the agents implementing the penalty
technique always outperform their non-penalized counterparts, as depicted in
Figure 2 where a comparison among four different configuration of agents is
displayed.

The best agent, trained within 1, 500 episodes using standard strategy with
penalty, managed to score an evasion rate of 43.15% on the holdout set. The
adversarial examples created were 97.64% functional, leading to an overall eva-
sion rate of 42.13%. Even considering the reset strategy that de-facto doubles
the amount of episodes to 3, 000, this number of episodes is still arguably small.
In fact, the agent was updated only about 13,900 times during training. This is
equivalent to the number of modifications created during training and is consid-
erably lower than the budget of 50,000 modifications used by [9] in their previous
approach. Thus, such an agent can be trained without highly powerful hardware
in a short period of time.

Table 4 summarizes the results of AIMED-RL compared to previous work.
While Fang et al. [16] report a higher evasion rate of 46.56% with functional
files, it is important to note that we were not able to reproduce these results
given that no artifact was made available.
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Fig. 2. Comparing our best results regarding the reward penalty strategy. The lines
represent the average of generated adversarial files over ten trained agents. For both
numbers of training episodes, the agents with the penalty outperform their counter-
parts. This concerns both the best and the average evasion rate.

We experienced a similar situation with F., Zeng et al. [18]. In this case only
the malware set was published.

Table 4. Comparison of evasion results of AIMED-RL against different approaches in
the literature. The LGBM model is employed widely across the literature and serves as
a benchmark. Only one approach implemented DeepDetectNet (DDNet), which makes
their evasion rates less comparable. The functionality test (FT) returns a binary output.

Approach Space Reward Perts. Model FT Evasion

Fang et al., 2019 4 Rdet, Rdist 80 LGBM Yes 46.56%

F., Zeng et al., 2020 218 Rdet, Rdist 100 DDNet Yes 19.13%

Anderson et al., 2018 11 Rdet 10 LGBM No 16.25%

AIMED-RL 10 Rdet, Rdist, Rsim 5 LGBM Yes 42.13%

Therefore, in order to evaluate the data, we proceeded to acquire their pool of
malware files and modified them with our best agent. By adding only five pertur-
bations we were able to get 42 out of 50 to be functional, ergo 84%. In their work,
however, they were injecting up to 100 transformations. Even if their results keep
the functionality rate that we had with five perturbations, the evasion rate with
our integrity tests would be around 16.07%. Since this is an extrapolation we
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do not strive for formal comparison. Nevertheless, we believe these reproducible
steps are important given that highly-perturbed PE files are reported to break
after a large number of modifications [5]. This argument similarly applies to [16]
which also used a high budget of 80 perturbations.

On the other hand, further approaches [16,18] also reported the use of IDA
Pro [35] to generate control flow graphs as a means of checking whether the
examples still showed the exact same behavior. Although this approach may
seem compelling, in order to be thoroughly implemented, it is likely to require
manual verification and, therefore, strongly increase the cost of generating fully-
functional adversarial examples. Regarding the remaining approach by Anderson
et al. [9], while the environment was published, integrity verification did not take
place.

With respect to the reward, the distribution of the parameters contributed in
different degrees towards the total reward. Similarity accounts for 24%,Detection
32%, and Distance 44%. In our approach, distance is updated on every turn and
hence has stronger role. However, further room for optimization may still be
available in terms of how parameters are updated.

Overall, the agent that reports the best evasion result on the holdout dataset
needs 1, 500 episodes of training with standard strategy and penalization acti-
vated. Unlike what can generally be observed in the literature, the evasion rate
for successful adversarial examples seems to improve by a better combination of
small factors rather than a larger sequence of adversarial perturbations.

5 Availability

In order to foster further research in this area we are releasing AIMED-RL4.
While we are aware that the work could be misused by adversaries, we believe
that enforcing security to protect from adversarial examples outweighs the po-
tentially negative impact. Malicious actors have available resources to generate
sophisticated attacks and even legitimate software can be exploited by com-
mitted adversaries. However, releasing the code to the community can enable
researchers to protect towards adaptive attacks and therefore increase the level
of defenses against adversarial malware.

6 Conclusion

In this paper we presented AIMED-RL, which aims to extend the capabilities of
existing approaches to generate fully functional adversarial examples in the mal-
ware domain. We redefined the reward function and evaluated different weight
strategies to maximize the output. To address the limitation of homogeneous
sequences of perturbations, which are a widely discussed limitation in reinforce-
ment learning approaches, we introduced and demonstrated the importance of a
penalty technique. Moreover, we showed that is possible to train a competitive

4 https://github.com/zRapha/AIMED
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agent that generates adversarial examples with a shorter sequence of transfor-
mations, which leads to less manipulated adversarial malware, without compro-
mising its functionality.
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