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Abstract—Modifying existing malicious software until malware
scanners misclassify it as clean is an attractive technique for
cybercriminals. In particular, fully automatizing the process can
bring adversaries to generate faster effective threats. Recent
studies suggest that injecting successful malware modifications
could lead to corrupt executable files despite of detection.
Therefore, we propose ARMED – Automatic Random Malware
Modifications to Evade Detection – to bypass classifiers by
automatizing valid malware generation based on detected threats.
The goal is to understand how successful automatic perturbations
can be used to avoid detection. In order to reach this goal,
we take portable executable malware and add a number of
small random injections to evade detection without affecting
the malware structure. Our experiments proved that only six
perturbations are required to create new functional malware
samples exhibiting exactly the same behavior yet with up to 80%
less detections based on original malware that was previously
detected. We show that within a few minutes an adversary could
take a previously detected malware and convert it in a clean new
mutation bypassing static malware scanners.

Index Terms—ARMED framework, malware, byte-level per-
turbations, evasion

I. INTRODUCTION

Malware creation or propagation belong to the routine of
almost every attacker on the Internet and it has been studied
for over 30 years since computer viruses have been formally
introduced [1]. It is an important resource for cybercriminals,
who pursue their own benefit through illegal activities (e.g.,
stealing sensitive information or encrypting it and holding it
hostage for ransom). In parallel, researchers, malware analysts,
and security companies spend most of the time researching
and improving solutions in order to protect information against
malicious software [2] [3]. Furthermore, users have also the
obligation to protect themselves by using their systems in a
safer manner and updating software frequently [4]. However,
proactive defense is a challenge. Protecting users from un-
known threats often leads to an arms race between malware
authors and security measures. Although defense mechanisms
have strongly improved in the last decades, attackers are
still able to find new ways to compromise their victims
without being detected either by finding novel approaches,
using complex packers, exploiting vulnerabilities, or social
engineering victims.

Despite of how malicious campaigns are targeting victims,
it generally involves a piece of malware to break into the

system to fulfill its goals such as exfiltrating data or at-
tempting to render a system unusable [5]. However, detected
malware is generally useless for new attacks and therefore
automatizing malware generation by recycling detected threats
is an interesting approach for criminals and an additional
constraint for malware protections. As the number of malicious
software increased in the last years to hundreds of thousands of
new malware samples daily [6], security technologies can no
longer purely rely on signatures anymore, instead they started
using heuristics and machine learning techniques for over a
decade [7]. The problem is that exclusively relying on machine
learning can be accurate but it is hardly recommended given
the large number of false positives (FP) that may arise [8]. That
means, finding the right balance can be challenging when deal-
ing with automatically generated malware mutations, which
can either bypass static malware detection or generate a high-
rate of FP to more sensitive malware scanners.

In order to understand how static malware detection
can behave against automated generated malware mu-
tations, we propose the following three research ques-
tions that inspired our solution ARMED (Automatic
Random Malware Modifications to Evade Detection):
i) How automatic random binary-level modifications in mal-
ware can affect static malware detection. ii) How complex
and expensive is the generation of functional versus non-
functional mutations. iii) Which influence does the number
of perturbations injected have to functionality and evasion of
new mutations.

With these three questions in mind ARMED was created
including a three-step process to generate new malware muta-
tions (modified versions of the original file) with high evasion
rate compared to the original malware given as input and
support the understanding of malware structure to improve
defense strategies. First, the manipulation box modifies the
original malware by inserting random binary-level perturba-
tions. Second a sandbox (oracle) tests its functionality to
make sure the new mutation is not corrupt and third malware
scanners report detections for the new mutation. The detection
rate of the latter is compared to that of the original input file
and depending whether the results are successful (detection
rate decreased) new mutations are stored in different databases
(cf. Figure 1).

The rest of this paper is structured as follows: Section II



provides the related work and knowledge that inspired design
decisions in Section III. In Section IV we introduce the
ARMED framework and evaluate its results in Section V.
Finally, we conclude our paper in Section VI.

II. BACKGROUND

This section lays the groundwork for the design of ARMED
in Section III by introducing the structure of input files used,
malware detection strategies, and evasion techniques.

A. Portable executable files

Portable executable (PE) files were created to establish
a way for the Microsoft Windows operating system to run
applications and to store the important data needed during its
execution [9]. The PE format includes executables extensions
such as exe, dll, and object code. PEs are an extension
of Common Object File Format (COFF) [10], which is a
format for executables previously introduced on Unix systems.
Editing PE files has been of interest for many years but the
development of such tools are complex and expensive at the
same time [11] [12]. In addition, many authors implement
their own parser that is linked to a specific language. Thus,
a recently approach has been introduced, dubbed LIEF [13],
which is developed to provide a cross platform library that
parses and modifies different executable formats including PE.
Despite it can have limitations to parse some files where code
needs to be patched after building the executable, it provides
a useful interface to interact with PE software.

B. Malware detection

Malware detection can be implemented in several ways but
most malware scanners use a combination of different tech-
nologies like signature-based, anomaly-based and heuristic-
based techniques. Signature-based methods [14] rely on iden-
tifying files using cryptographic hash values of the binary
or specific string inside the file and comparing it to known
signatures in a database. This technique is very fast, though it
prevents new variants of malware to be correctly identified.
Anomaly-based methods [15] focus on identifying what a
normal process looks like and attempts to classify malware
based on its activity rather than patterns. That is particularly
useful when malware started to be generated much faster
than analysts were able to deliver signatures. Heuristic-based
approaches [16] attempts to match behavior of a malware
sample with previously defined actions. This technique is often
combined with others as supplementary detection. In addition,
artificial intelligence and machine learning [17] became an
important approach of detection methods and have been widely
used to classify malware [18] with more recent approaches
including neural networks [19] [20] and deep convolutional
networks [21].

Another classification of detection strategies can be done
by grouping approaches into statically and dynamically. Static
approaches focus on classifying samples by analyzing it
without executing the file and, for example, extracting in-
formation about strings while dynamic approaches attempt to

analyze its behavior in runtime in a controlled environment,
which is useful to understand, among others, API calls. Both
approaches have its limitations [22] and good analysis will
probably leverage both techniques [23]. However, given the
number of malware samples produced daily and the ability to
detect them prior to execution, static malware detection still
plays a key role in computer security and therefore generating
mutations that can no longer be detected based on previously
known malware remains an important issue if automatization
of the process is successfully achieved.

C. Malware evasion

Obfuscation techniques [24] attempt to hide software’s
functionality and it can be a strong tool for malware evasion.
Packers are applications that modify the execution form
of executable files while keeping their original functionality.
These are specially designed to obfuscate software in order
to hide its behavior from third-parties like Themida or Ar-
madillo [25]. Currently, they are also widely used to make
more complex the analysis and reverse engineering of malware
but were initially developed [26] to improve efficiency of
memory and bandwidth used when storing and transferring
files. After these resources became more accessible, com-
mercial vendors still continued to use packers to deliver
their products in order to protect their software. However,
criminals have also started to use it to bypass detection. In
fact, packers are developed by both corporate vendors and
malicious organizations. Further research developed online
services like PolyPack [27] that offers an array of packers and
malware scanners to test against each other in order to find
which packers provided the best evasion rate. Results showed
that their approach outperforms the best packer, Themida, by
40%. Another technique is malware diversification, which
provides a way of generating an almost infinite number of bi-
naries with the same functionality but very low similarity [28].
Further approaches extended the Low Level Virtual Machine
(LLVM) implementation by replacing instructions and types
of control-flow randomization [29]. Polymorphism [30] is
another mechanism used to attempt evasion. The malware code
implements a mutation method that modifies its content using
an encryption key. Each time the malware runs, a mutation
happens using a different key, which provides a new copy of
the code that forces a new signature by scanners. However,
the polymorphic engine deciphers a similar payload code and
load it into memory each time and that makes a post-execution
detection using signatures more feasible. Consequently, there
is a similar technique called metamorphism [31]. In this case
when the malware runs, the code that is loaded into memory
is the one that changes and it writes back to the system a new
version of the malware. That technique helps bypass detection
– mostly signature-based – at some extent but writing this kind
of malware could be complex and expensive [32].

III. DESIGN DECISIONS

With research questions and related work in place scenario,
requirements, and assumptions can be specified leading to the



Fig. 1. ARMED framework

final architecture of ARMED and the implemented workflow.

A. Scenario

Generally, detection engines are sensitive and require per-
manent learning to detect new malicious files successfully.
From an attacker’s perspective the detection rate of such
engines should be low and, thus, modifications are required to
render previously-known malware undetected again. In order
to reach this goal different ways of bypassing detection exist as
described in Section II. The strategy of injecting perturbations
to modify the PE file’s structure is applied to compromise
static analysis detection approaches and lead to misclassifying
new malware mutations.

The nature of malware creation is complex and there is a
plethora of malware samples being created daily [6]. We focus
on using as input those samples, which have been previously
known and reported to all engines listed in VirusTotal. The
current detection rate of the original file is used as benchmark
to measure against new mutations’ detection rates and compare
their performance.

B. Requirements

We introduce four requirements that we consider essential
for ARMED as they will make sure the framework generates
functional mutations:
• Automatization: Malware attackers have different tools

to create their new samples and campaigns. However, a
part of the job still needs to be adjusted manually. We
are aiming to understand how automatic solutions could
be created to bypass malware engine detections based on
previously known malware.

• Platform: Although our framework allows to inject per-
turbations on different types of executable files, we will
be focusing on Windows PE malware as this constitutes,
in our opinion, a large portion of currently propagated
malware given that Microsoft’s operating systems are
predominantly used.

• Size: We used malware samples of at least 100 kilobytes
and maximum 1 megabyte to keep perturbations feasible
and also data transfer efficient between our platform
and the services used. However, the framework supports
larger files, too.

• Functionality: Given that perturbations could affect the
basic structure of a portable executable file, we need to

ensure that any mutation will be functional before testing
its detection rates.

C. Assumptions

We assume that currently most of malware campaigns focus
on 32/64 bits Windows platforms. Thus, we use Win32/64 PE
files as input for ARMED.

Detection rates come from VirusTotal as it is a commonly
used and free available tool for detection of malicious files.
We are aware that it is a platform grouping most of anti-
malware solutions and should not be used to compare re-
sults among comercial solutions [33]. In fact, benchmarking
malware scanners has been long discussed about how to
implement a neutral test environment that accurately reflects
detection rates [34] [35]. That is given the fact that many
security solutions have additional features and layers that are
not being implemented by online platforms. In order to have
more accurate results for any individual malware scanner it
would be recommended to install and configure it separately
and assess the results for that engine. That approach could
be interesting for targeted attacks where the goal is to bypass
specific software.

D. Notations

An unmodified sample is used as input for ARMED and is
called original sample S. A perturbation p is defined as a
specific modification injected into any given sample resulting
in a modified sample S′ called mutation. Perturbations are
byte-level modifications that include changes from appending
random characters to renaming or adding new sections to the
malware structure. A set of perturbations is called sequence
and two or more sequences can have the same length but
different order of perturbations performed. That means, even
by keeping the same input sample S the resulting modified
sample S′ can differ all the time depending on the applied
sequence. An oracle is defined as an external service ensuring
the file (S′ or mutation) is functional (valid) and not corrupt
(invalid).

The detection rate d is defined as the rate of engines
detecting the sample (either S or S′) as malicious and is stored
in a database including information of the applied sequence
and a link to detection webpage with engine results. Each time
ARMED initiates with a sample S a new round r starts.

Combining the above introduced terms means, that when
ARMED is performed with r=3, the same initial sample S



Algorithm 1 The automatic generation of mutations
1: M: set of malware files
2: M*: set of evasive samples
3: p: number of perturbations to inject
4: for each r ∈ rounds: do
5: sample a batch of M
6: S ← random(M)
7: S′ ←ManipulationBox(S, p)
8: a(S′)← analysis(S′)
9: if a(S′) ∈ Functional: then

10: d(S), d(S′)← detection(S, S′)
11: if d(S’) < d(S): then
12: update M* with S’
13: end if
14: end if
15: end for

can be used and will generate three different modified samples
S′. The resulting mutations will likely have different detection
rates d. For each round r a report is stored in the database.

IV. ARMED FRAMEWORK

Based on defined requirements and assumptions the
ARMED framework can be specified. We implemented our
solution building on the work from Anderson et al. [40], which
is an extension from the OpenAI gym environment [41].

The following three components – manipulation box, sand-
box (oracle), and malware scanner (cf. Figure 1) – are briefly
described in ARMED's architecture in Section IV-A. Addi-
tionally, a database is required to store samples, reports, and
detection rates for further analysis. The resulting workflow
using this architecture is presented in Section IV-B following
Algorithm 1.

A. Architecture

Figure 1 illustrates the handling of an original sample S
triggering ARMED to develop a mutation S′. During this
modification process the sample passes through the following
components in a row:

The manipulation box is in charge of injecting random per-
turbations generating a mutation S′. As defined in Section III
a finite number of perturbations can be performed building a
sequence that can differ on each round.

The sandbox is a virtual machine service [42] used to stat-
ically and dynamically analyze the mutation S′. In this case,
it proves functionality in order to make sure that integrity is
kept. The sandbox provide also malicious indicators including
API calls and behavior of the file, file dropped, screenshots
and traffic dumps. These return a maliciousness indicator that
is also taken into account to determine how successful the
new mutation is. We assume that malicious actors would have
enough time to run multiple attempts until finding executable
samples S′, hence functionality comes at the expense of time.

The malware scanner is used to determine detection rates
for S and S′. We decided to use an online service for testing

common used detection engines in parallel. An attacker could
use the same strategy and, thus, it is recommended. However,
we are aware of the limitations [33] of command-line versions
and the possibility that some engines do not behave exactly
the same on desktop versions or the fact that parametrization
can affect aggressiveness of detection.

B. Workflow

ARMED's workflow follows Algorithm 1 that can be broken
down into four steps, as observed in Fig 2, including the
previously mentioned three components of the architecture.

Step 1 is initiated as soon as a sample S (a PE file) is
handed over to the manipulation box. From 11 defined [40]
perturbations implemented via LIEF1 we decided to use nine,
namely: overlay_append, section_rename, section_add,
section_append, remove_signature, remove_debug,
break_optional_header, upx_pack, and upx_unpack. The
following (imports_append and create_entry) are not used,
as experiments showed that they may fail to patch the sample
properly and most likely create corrupt files given entry point
errors. The perturbations are randomly chosen and injected at
binary-level (line 7) generating the mutation S′.

In order to generate valid samples every new S′ needs to be
tested against an oracle to make sure the newly created samples
are still valid. This test builds Step 2 of ARMED and is caused
by line 8. In case S′ passes the test successfully, it can be
guaranteed that the perturbations did not break the structure of
PE files. In this step ARMED is flexible in which tool is used
for the functionality test. The only requirement is to have an
interface or API available, either remotely or locally, to where
each request can be sent. After submitting the mutation to the
sandbox it will be executed and analyzed returning all relevant
information in a JSON report including: persistence, finger-
print, stealthiness, and overall malicious indicators as well as
networking information (e.g., DNS requests, domains/servers
contacted, and potential URLs in memory). Those fields are
then parsed and used to determine whether a sample was
able to be executed. In case the functional test fails in step
2 the information is stored in a so-called "Fail Database"
and another ARMED round initiates keeping S and applying
another sequence in step 1.

Assuming step 2 was passed successfully malware engines
are contacted in Step 3 to determine detection rates (line 10).
Here S and S′ are sent for detection. Therefore, an API was
implemented allowing to submit samples and retrieve detection
reports (d(S) and d(S′)). For comparing the detection rates
received it is important to note hat the number of maximum
engines may vary from one detection to another given that
each analysis is independent and sometimes not all engines
are available, hence they are normalized in the final result.

Finally, in Step 4 the detection rates received are compared
(line 11) to match the overall goal: d(S′) < d(S), which means

1The goal of the library LIEF is to provide a cross-platform bridge to
manipulate format internals of a PE file.



Fig. 2. Sample Sa: Functional vs. non-functional mutations (n=1265)

Fig. 3. Sample Sa: Detection of 240 mutations based on perturbations injected

the manipulation box performed successful, producing a valid
PE file S′ that has a lower detection rate as the initial sample
S. Thus, S, S′, along with a report including perturbation
sequences, d(S), d(S′), and the URLs corresponding to the
detection result overview are stored in an "Evasion Database".
If d(S')) >= d(S) the entire process failed in step 4, the
information is stored in "Fail Database" and a new round r
starts with step 1 using same initial sample S until a successful
S′ is found.

V. EVALUATION

The ARMED framework is evaluated concerning function-
ality, detection quality, sequence structure, and processing
time. Windows PE files, classified as malware, are used as
input. Several rounds of ARMED are performed injecting
different sequences of perturbations to generate a mutation
sample causing a lower detection rate than the initial sample.

Finally, limitations of ARMED can be identified leading to
optimizations in the future.

A. Functionality

In order to evaluate the functionality of ARMED a set of
Windows PE malware samples were tested generating hun-
dreds of valid mutations. Randomly selected original samples
were used to generate thousands of new malware mutations
and analyze the results as follows. It could be observed that
some of the PE samples tested returned error when parsed
by LIEF because the library does not use any disassembler
causing a corruption during the import of LEA instructions2

that are implemented on the import address table. In order
to overcome this problem, an initial pre-filtering is needed to
isolate functional samples that are correctly parsed. Not all
mutations generated are valid since perturbations can make
the file corrupt. Our experiments showed that we usually need
to create at least the double of mutations than the number of
valid files we intend to reach.

As Figure 2 illustrates, every column shows the number
of mutations needed to be generated in order to achieve 10
valid mutations, meaning they are passing the functionality
test successfully. For instance, for all number of perturbations
injected we needed to generate at least 20 mutations for every
case in order to reach 10 valid, except for p = 3 where
18 mutations were enough to generate 10 functional ones.
On the other hand, for mutations with 20 perturbations (p
= 20) we needed to generate 94 files, more than nine times
the number of mutations expected in order to achieve the
functional mutations desired. And from 20 and onwards, we
can observe that the more perturbations injected the frequent
mutations are built corrupt and, thus, it takes much longer
to achieve valid malware mutations. The last case analyzed,
p = 25, generated 133 corrupt mutations until 10 functional
were finally found. The average is at 52.7 as it is marked by
the red line in Figure 2. This behavior repeated itself with
small variations across different samples as we can observe in
Figure 4. In this case, we used another original sample S to
generate mutations. Again, for each case more than double of
files needed to be generated to find 10 valid mutations.

Those that received five perturbations only needed to be
generated 15 times, whereas for p = 18 108 mutations were
required. The average in this case was at 55.2. That is an
interesting fact to keep in mind when using implementations
without oracles to confirm whether new mutations are valid
files. Thus, functionality testing or using an oracle to determine
whether a mutation is executable is an expensive but very
necessary approach to make sure adversarial examples are
valid. Otherwise, the system will risk to generate evasive non-
viable mutations, which fail to fulfil its purpose.

B. Detection

In order to test the detection criteria for ARMED the same
original samples Sa and Sb were used, which were detected by

2Load Effective Address (LEA) instructions are arithmetic operations
designed to map high level memory references.



Fig. 4. Sample Sb: Functional vs. non-functional mutations (n=1325)

49 and 46 engines respectively. We generated for each original
sample S 240 successful mutations S′ divided across 24
groups. Each group accounts for a sequence of perturbations of
length starting with two until 25. We took 24 cases to compare
against each other and see how different mutations perform
versus engine detections. The reason we stopped collecting at
that number is basically because higher perturbation rates do
not seem to improve detection results.

Moreover, in our experiments we tested injecting success-
fully until 50 perturbations without affecting the new mu-
tation’s functionality, nonetheless for that number of pertur-
bations the number of mutations that need to be generated
in order to achieve successful mutations increased strongly
rendering the whole process much slower. Even after 20
perturbations the mutations do not seem to be more successful
in minimizing detection, which makes larger sequence vectors
not necessarily more efficient. We also experimented with high
number of perturbations – between 50 and 500 – and although
the samples were not functional anymore, it proved us that
mutations can be more or less successful despite the number
of perturbations inserted (cf. Table I). In fact, none of the tests
reached complete evasion and the lowest detection rates were
around four to five engines for corrupt files with 50 and 500
injections respectively while valid mutations reported five to
six detections with only five perturbations inserted.

Therefore, our results proved that a small number of pertur-
bations can have a significant impact on new mutations that
would exploit most of engines’ static detections’ sensitivity.

Furthermore, with the sample observed in Figure 3 we tested
sending half of the mutations to VirusTotal [33] and waiting
a few weeks to continue the test with the rest. As we can
observe, good evasion results (around 10 engines or less) were
no longer achieved after the pause. That implies that after a
few days that the new mutations have been uploaded, most of
the engines start to detecting them as we can be seen with all
mutations between p = 11 and p = 25. On the other hand,

Fig. 5. Sample Sb: Detection of 240 mutations based on perturbations injected

for another original sample S, we generated all mutations
within a couple days and analyzed the results as showed in
Figure 5. In this case, unlike the previous sample, detection
rate around 10 was observed throughout all cases. Moreover,
interesting evasion results were observed for mutations with p
= 9 and p = 11 where only 8 out of 68 engines positively
detected the malware. That leads us to believe that more
successful propagation campaigns should most likely refrain
from uploading malware and instead test detection locally
targeting specific engines.

TABLE I
COMPARING HIGH-EVASION MUTATIONS FROM SAME S (44/67

DETECTIONS)

Mutation Perturbations Detection Rate Valid
S′

1 5 5/65 Yes
S′

2 5 6/66 Yes
S′

3 6 6/68 Yes
S′

4 50 4/68 No
S′

5 500 5/66 No

C. Sequence Structure

As defined in Section III a sequence has a length and
a specific order of perturbations. In order to analyze the
impact of the sequence structure, the detection results from the
experiments with different sequences were plotted in Figures 3
and 5. The y-axis gives the number of engines detecting S′

as malicious and the x-axis determines the sequence length
(= number of perturbations). As a benchmark the detection
rate of the original sample S is included as red dashed line.
Dots indicate the respective detection rate for each S′. The
blue line indicates the average of the detections per sequence.
Figure 3 shows that for different mutations the average rate
of detections usually oscillates between 20 and 30 engines,
whereas in Figure 5 some of the mutations are detected in the



range of 30 and 40 engines. This shows that some original
samples S generate more heterogenous variants of S′.

A specific number of perturbations produced better results
than others (e.g., p = 10 in Figure 3 and p = 9 in Figure 5).
Looking to the overall detection rates of S′ in Figure 5 it
can be stated that with almost all number of perturbations
a small number of detections, ergo high number of evasion,
can be achieved indicating that the perturbation order in the
sequence may be more relevant than the sequence length itself.
For small number of perturbations, it can also be observed that
some sequences might result in higher detection rates that the
benchmark (e.g., p = 2 in Figure 3). However, these outliers
seem to be connected to the fact that after a while more engines
detect the original S and the less S′ is changed (smaller p
values) the more similar to the original sample they are and
malware scanners adjust their detections better thus returning
higher detection rates for very similar mutations.

D. Processing Time

The entire ARMED workflow, triggered by an initial sample
S and creating S′ where d(S′) < d(S), takes currently around 5
minutes in average. Performing step 1 takes less than a second
and step 2 between 30 and 45 seconds. The most demanding
part of the process is step 3, as third-party services are involved
and performance is highly influenced by availability of the
systems and probably the amount of people using the service
at the same time. The processing time for step 3 can be
drastically reduced if there is a surrogate classifier, which
can be used to probe S′ and then transfer knowledge to
real-world classifiers. In our experiments we also evaluated
MetaDefender [43], a service similar to VirusTotal that claims
to be much faster but problems with license agreement and
frequent FPs in results refrained us to continue to pursue
that path. Moreover, we implemented three scanners that are
commercially available to optimize step 3 and we were able
to reduce processing time from 5 minutes to 20 seconds in
average. That would make the whole process successful in
around one minute, yet we kept reports from the online service
as more than 60 engines are compared instead of three.

E. Limitations

Based on the evaluation results presented throughout Sec-
tions V-A to V-D limitations were identified concerning colli-
sions and detections. Our experiments showed that when the
sequence injected is of length one, or some cases two, many
mutations end up being duplicates of the original sample S.
That means, the cryptographic hash calculated for both files
are equal. Therefore, we skipped p = 1 and started carefully
considering mutations with sequences of length two to 25,
which gives us 24 different cases to analyze how mutations
perform against malware classifiers.

Security layers can help preventing the infection even
though S′ will be less detected. For instance, if S′ is generated
from a malware dropper or downloader, the download of the
malware or the payload dropped can be detected by firewall
configurations or the new sample might be already known for

the malware engine. Therefore, ARMED can be implemented
across different malware samples (e.g., droppers, downloaders
and payload) and combined with additional layers of evasion
such as packers in order to increase the evasion rate.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we introduced the ARMED framework to
inject random perturbations on Windows PE malware files
in order to create mutations S′ with optimal evasion among
common malware engines. ARMED will be useful for re-
searchers and analysts to understand how attackers could
automatically manipulate malware in order to bypass static
detection classifiers. Evaluations showed that random binary-
level modifications, resulting in S′, can decrease malware
engines’ detection rate up to 80% comparing to the detections
of the original sample S. Generating functional mutations de-
pends largely on the specific order of perturbations randomly
injected. In average around 18% of mutations generated in
our experiment are functional and not corrupted. Increasing
functionality rate remains an open issue to be addressed. High
evasion can be achieved with both, small and large sequences.
Nevertheless, it was acknowledged that if the sequence length
is beyond 20, it is challenging to achieve functionality, which
means a higher number of S′ must be generated to achieve a
minimum number of functional mutations at the end.

As future work it is considered to improve the understanding
of the perturbations’ order using machine learning approaches.
Given that currently the sequence is randomly chosen, we
intend to further develop techniques to define successful
injections and predict optimal evasion mutations depending
on characteristics of the input sample S.
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