
Realizable Universal Adversarial Perturbations for Malware

Raphael Labaca-Castro†, Luis Muñoz-González¶, Feargus Pendlebury§

Gabi Dreo Rodosek†, Fabio Pierazzi‡, Lorenzo Cavallaro§

† Universität der Bundeswehr München
¶ Imperial College London

§ University College London
‡ King’s College London

Abstract
Machine learning classifiers are vulnerable to adversar-

ial examples—input-specific perturbations that manipulate
models’ output. Universal Adversarial Perturbations (UAPs),
which identify noisy patterns that generalize across the input
space, allow the attacker to greatly scale up the generation
of such examples. Although UAPs have been explored in
application domains beyond computer vision, little is known
about their properties and implications in the specific context
of realizable attacks, such as malware, where attackers must
satisfy challenging problem-space constraints.

In this paper we explore the challenges and strengths of
UAPs in the context of malware classification. We generate se-
quences of problem-space transformations that induce UAPs
in the corresponding feature-space embedding and evaluate
their effectiveness across different malware domains. Addi-
tionally, we propose adversarial training-based mitigations
using knowledge derived from the problem-space transforma-
tions, and compare against alternative feature-space defenses.
Our experiments limit the effectiveness of a white box An-
droid evasion attack to ~20% at the cost of ~3% TPR at 1%
FPR. We additionally show how our method can be adapted
to more restrictive domains such as Windows malware.

We observe that while adversarial training in the feature
space must deal with large and often unconstrained regions,
UAPs in the problem space identify specific vulnerabilities
that allow us to harden a classifier more effectively, shifting
the challenges and associated cost of identifying new universal
adversarial transformations back to the attacker.

1 Introduction

Universal Adversarial Perturbations (UAPs) [54] are a class
of adversarial perturbation in which the same UAP can be
applied to many different inputs to induce errors in the ma-
chine learning (ML) classifier. UAPs have proven to be very
effective for crafting practical and physically realizable at-
tacks in computer vision [22, 42, 54, 56] as well as for NLP
tasks [77], and audio and speech classification [1, 58].

However, to the best of our knowledge, the study of real-
izable universal perturbations in ML-based malware detec-
tion has not yet been explored, likely due to the difficulty of
modifying real-world software while preserving malicious
functionality [63]. Despite this, UAPs remain a tempting
attack tool for adversaries, as attackers naturally gravitate
towards using low-effort/high-reward strategies to maximize
profit [29, 30]. UAPs enable attackers to cheaply reuse the
same collection of precomputed perturbations across differ-
ent malware in order to evade detection. As well as being
an attractive prospect for individual malware authors, UAPs
are promising for the Malware-as-a-Service (MaaS) business
model [40, 50, 79], in which service providers aim to produce
cheap, universally evasive transformations at scale.

In this paper, we analyze the impact of UAP attacks against
malware classifiers, revealing that they pose a significant
and real threat against ML-based malware detection systems.
Firstly, we show that the effectiveness of UAP attacks in the
feature space against linear and nonlinear classifiers is com-
parable to that of input-specific attacks, demonstrating the
existence of a systemic vulnerability in these malware detec-
tors. Secondly, our analyses in the problem space confirm
this vulnerability. In the process, we propose a methodology
to produce functional (real) adversarial malware that rely on
UAPs. Specifically, we propose a greedy algorithm that iden-
tifies a short sequence of problem-space transformations that,
when applied to a malware object, evade detection with high
probability while preserving the malicious functionality.

We provide an extensive experimental evaluation across
the Android and Windows malware landscape, exploring lin-
ear and nonlinear ML models, including Logistic Regres-
sion (LR), Support Vector Machines (SVMs), Deep Neural
Networks (DNNs), and an improved variation of Gradient
Boosting Decision Trees (GBDTs), known as LightGBM
(LGBM) [41]. Our results show that unprotected models are
brittle and vulnerable to our UAP attacks, even when the
attacker’s knowledge about the target classifier is limited.

To defend against this threat we propose a novel method to
perform adversarial training using evasive examples created

1

ar
X

iv
:2

10
2.

06
74

7v
2

 [
cs

.C
R

]
 2

 F
eb

 2
02

2

in the problem space. Adversarial training [31, 52] has proven
to be one of the most promising defense approaches against
adversarial examples, but protecting against multiple pertur-
bation types is challenging [73]. This limitation is supported
by our experiments which show that feature-space adversar-
ial training is not a sufficient solution against problem-space
UAP attacks. Therefore, we propose an adversarial train-
ing method with UAPs by learning from the feature-space
perturbations induced by the problem-space transformations.
Our approach allows us to protect against a set of manipu-
lations used by an attacker to produce adversarial malware,
with a small decrease in the detection rate of non-adversarial
malware. Consequently, our method reduces the number of
evasive samples required to be crafted in the problem space
for a defender to perform adversarial training.

We note that we do not provide robustness against all possi-
ble adversarial ML attacks. Our defense focuses on “patching”
the pockets of vulnerabilities that allow adversaries to craft
realizable attacks using a predefined toolkit of transforma-
tions. While defending against unknown unknowns remains
an open challenge, our methodology can be realistically ap-
plied to harden ML-based malware detection models against
known vulnerabilities (i.e., the set of transformations that
attackers rely on to evade detection). This raises the cost of
creating evasive malware, as adversaries must either identify
a new set of problem-space transformations, or focus on input-
specific attacks that may require longer transformation chains,
increasing the risk of malware corruption [48].

In summary, this paper makes the following contributions:

• We first demonstrate that ML-based malware classifiers
are especially vulnerable to UAP attacks in the feature
space, and empirically show that they achieve similar
effectiveness compared to input-specific attacks (§3).

• We then propose a novel attack methodology to find
weaknesses in ML-based malware classifiers using
UAPs. This methodology allows attackers to modify
real malware in the problem space while preserving mali-
cious semantics and plausibility (§4). We experimentally
demonstrate the effectiveness of our approach by gen-
erating highly evasive Windows and Android malware
variants using UAP attacks.

• We lastly propose and evaluate a novel defense to miti-
gate this threat based on adversarial training, using the
knowledge from the evasive malware generated with our
UAP attack. Our defense raises the cost for attackers
and disincentivizes the use of powerful UAPs (§5).

We release our UAP attacks and defenses for malware
as a library, GAME-UP, to foster future research. For the
purpose of review, we host the anonymized code here: https:
//bit.ly/getGAME-UP.

2 Background

We introduce major notation and pertinent background on
feature-space and problem-space evasion attacks, UAPs,
and adversarial training. In particular, we borrow notation
from Biggio and Roli [16] and Pierazzi et al. [63].

2.1 Adversarial Evasion Attacks

In the malware domain, evasion attacks occur when an at-
tacker modifies an object at test time to evade detection. The
object can be represented in two ways: feature-space objects
are the abstract numerical representation fed to the machine
learning algorithm whereas problem-space objects represent
the original input space, i.e., real software applications.

The feature space, label space, and problem space are de-
noted by X , Y , and Z, respectively. Each input object z ∈ Z
is associated with a ground-truth label y ∈ Y . A classifier
g : X −→ Y produces a label prediction ŷ = g(x). In order to
be processed by a classifier, we must use a feature mapping
function to convert it to the feature-space representation such
that ϕ : Z −→ X ⊆ Rn. In the software domain, the feature
mapping function is not invertible nor differentiable, meaning
it is not easy to find a problem-space attack with traditional
gradient-based methods; moreover, with respect to the feature
space, we must take into consideration several additional con-
straints to generate realistic, inconspicuous problem-space
objects that preserve the attacker-defined behavior.
Feature-space attacks. The goal of the adversary is to
transform an object x ∈ X into an object x′ ∈ X in which
g(x′) = t ∈ Y where t 6= y. Hence, the adversary forces the
model g to predict the incorrect class for the object x′ . In the
malware context, we consider the case in which a malicious
object is misclassified as benign.
Feature-space constraints. A set of constraints Ω defining
possible transformations in the feature-space. For example,
limiting the lower and upper bounds of the perturbation or the
total number of modifiable features.
Problem-space attacks. The goal of the adversary in the
problem-space is to find a sequence T : Tn ◦ Tn−1 ◦ ... ◦ T1
where each transformation T : Z −→ Z mutates the object z
such that g(T(z)) = t ∈ Y where t 6= y, while satisfying all
problem-space constraints defined by the attacker.
Problem-space constraints. Problem-space attacks must
satisfy additional constraints [63]: available transformations,
preserved semantics, robustness to preprocessing, and plausi-
bility. For example, transformations in the problem space are
typically limited to addition, since removal or modification
can lead to file corruption. For machine learning classifiers
relying on static analysis, this is often achieved by injecting
instructions that will not be executed or modifying parameters
that do not affect the integrity of the file.

2

https://bit.ly/getGAME-UP
https://bit.ly/getGAME-UP

2.2 Universal Adversarial Perturbations

UAPs are a class of adversarial perturbations where a single
perturbation applied to a large set of inputs produces errors in
the target machine learning model for a large fraction of these
inputs [54]. UAPs reveal systemic vulnerabilities in the target
models and expose a significant risk, as they reduce the effort
for the attacker to create adversarial examples, enabling practi-
cal and realistic attacks across different applications as, for ex-
ample, in computer vision or object detection [19, 27, 51, 69],
perceptual ad-blocking [74], or LiDAR-based object detec-
tion [20, 75]. As UAPs find patterns the target models are
especially sensitive to, attackers can use UAP attacks to craft
successful and very query-efficient black-box attacks [22].
So far, realizable UAP attacks have not been explored in the
context of machine learning malware classifiers.

In our experiments, we measure the effectiveness of UAP
attacks in terms of the Universal Evasion Rate (UER), com-
puted over a set of inputs X and defined as:

UER =
|{x ∈ X : argmaxg(x+δ) 6= y ∈ Y }|

|X |
(1)

That is, UER denotes the fraction of inputs in X for which
the classifier outputs an error when the UAP δ is applied.

2.3 Adversarial Training

Adversarial training is one of the most successful and promis-
ing approaches for defending against adversarial inputs [31,
52]. It involves training a model using adversarial examples
crafted for each class so that the model becomes more robust
to these types of inputs. The robustness gained depends on
the strength and type of examples generated. Shafahi et al.
[67] also proposed using UAP adversarial training to defend
against UAP attacks in computer vision tasks.

However, adversarial training suffers from some limita-
tions. When using standard adversarial training techniques,
such as Projected Gradient Descent (PGD) or multi-step PGD,
the cost of generating adversarial examples is very high, mak-
ing them impractical for large-scale datasets—although some
more specialized techniques can be used to alleviate the com-
putational burden [66]. On the other hand, defending against
multiple perturbations is challenging [73] and making the
model robust to certain perturbations can facilitate evasion
attacks that use different perturbations the defender did not
consider during training.

3 Feature-Space UAPs for Malware

In this section, we present a motivational experiment to
demonstrate that malware classifiers are especially vulner-
able to UAPs crafted in the feature space—that is, without

considering the set of problem-space constraints which re-
strict how the attacker can mutate an input object. Although
in a domain such as malware, feature-space attacks may be
unrealistic from a practical perspective [63], this analysis ex-
poses the systemic risk of malware classifiers to universal
perturbations and the importance of understanding this threat
in the problem space, as we describe in subsequent sections.
To the best of our knowledge, this is the first study of the
impact of UAP attacks for malware detection.

We perform an empirical evaluation of feature-space UAP
attacks using two well-known malware datasets: i) SLEIP-
NIR [4] for Windows malware and ii) DREBIN20 [10, 63] for
Android malware. SLEIPNIR consists of 34,995 malicious
and 19,696 benign PE files and uses a binary feature space
where each feature corresponds to a unique Windows API
call, with 1 and 0 indicating presence and absence of the call,
respectively. Each vector (i.e., PE representation) consists
of 22,761 API calls. The DREBIN20 dataset, also a binary
feature space, is presented in detail in §4.2.

For both datasets we create a random split with 60% of
examples used for training and 40% for testing. Note that,
without loss of generality, here we consider SLEIPNIR as a
Windows representative out of simplicity, given its convenient
binary feature space, so that we can have a more direct and
clearer comparison between Windows and Android malware.
Thus, we can use the same type of constraints to model the
attack’s strength using the L0 norm. For the problem space
analysis, in the remainder of the paper will consider a more
comprehensive dataset: EMBER [6], which also includes
continuous features (§4.3). The use of EMBER would have
resulted in a more difficult comparison for feature space at-
tacks, as we would need to combine different norms to model
the attacker’s constraints for both the continuous and the dis-
crete features present in the dataset.

For both datasets we train a Logistic Regression (LR) clas-
sifier and a Deep Neural Network (DNN) with the following
architecture: n f × 1,024× 512× 1, where n f = 22,761 for
SLEIPNIR and 5,000 for DREBIN20. For the DNNs we use
Leaky ReLU activation functions for the hidden layers (with
negative slope equal to 0.1) and a sigmoid activation function
for the output layer. We include Dropout to reduce overfitting
and use the Adam optimizer [43] with learning rate equal to
10−3 for both the LR and the DNN.

3.1 Input-specific vs UAP attacks

We test the robustness of the LR and the DNN classifiers
against input-specific and UAP attacks under perfect knowl-
edge white-box settings. For the input-specific attacks we
use the attack proposed by Grosse et al. [34], which relies
on the recursive computation of the Jacobian, searching at
each step for the feature that maximizes the change in out-
put in the desired direction (i.e., towards evasion). For the
UAP attack we propose a method where we select the most

3

0 5 10 15 20
L0 norm

20

40

60

80

100
Cl

as
sif

ica
tio

n
Er

ro
r (

%
)

DREBIN

UAP LR
UAP DNN
Specific LR
Specific DNN

(a) Android

0 5 10 15 20
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

SLEIPNIR

UAP LR
UAP DNN
Specific LR
Specific DNN

(b) Windows

Figure 1: Input-specific vs. UAP white-box attacks in the
feature space against LR and DNN for (a) Android malware
(DREBIN) and (b) Windows malware (SLEIPNIR).

salient features computed by the Jacobian averaged over the
malware examples in the test set. We define the attacker’s
feature-space constraints in terms of the L0-norm, i.e., the
number of features that the attacker can modify, exploring
values from L0 = 1 to 20. As in Grosse et al. [34], we further
assume that the attacker can only add features, in order to
preserve malicious functionality, i.e., the attacker can only
change features from 0 to 1 but not from 1 to 0. For the UAP
attack, the effective change in the number of features that are
set to 1 after the attack is at most L0 for each input, i.e., some
of the features for these inputs may already be set to 1, and
thus, the UAP does not change their value.

The computation of the attacks against the LR can be sim-
plified: for the UAP attack, we select the features with the
most negative weights, i.e., we select the top-L0 features that
are most indicative of goodware. For the input-specific at-
tacks, for each input, we also select the top-L0 features that
are most indicative of goodware and that have value 0 for that
specific element.

Figure 1 shows the results for the DREBIN20 and SLEIP-
NIR datasets, reporting the classification error of the adver-
sarial malware at different attack strengths (including when
the malware is not manipulated, i.e., L0 = 0). We observe that
for L0 = 20, the effectiveness of both UAP and input-specific
attacks is above 95% in all cases, achieving in some cases
effectiveness close or equal to 100%. In other words, just by

modifying 0.09% and 0.4% of the features used by SLEIP-
NIR and DREBIN20 classifiers respectively, we can achieve
very successful attacks.

Most importantly, we observe that the effectiveness of the
UAP attacks is comparable to those of the input-specific at-
tacks, especially for the linear classifiers, where the results
are almost identical. The reason is that, in the case of the
LR, the features associated with the most negative weights
(i.e., those indicative of goodware) are rarely present in the
malware examples. Therefore, in most cases, both UAP and
input-specific attacks modify the same features.

For lower values of the L0-norm we observe that the DNN
is more robust than the LR, and that for DREBIN20, the effec-
tiveness of the UAP attack against the DNN is slightly lower
compared to input-specific attacks. However, as previously
mentioned, given the very low percentage of features the at-
tacker needs to modify to craft very successful attacks, our
results show that both LR and DNN are very brittle and can
be easily evaded, which is consistent with previous work [34].

3.2 Transferability of UAP attacks
Additionally we perform an empirical evaluation of the trans-
ferability [59] of UAPs between the linear model and the
DNN to better characterize their vulnerabilities in the feature
space. Using the same settings as before, we use the UAPs
previously generated for both the LR and the DNN and per-
form transfer attacks. The results are shown in Figure 2 for
DREBIN20 and SLEIPNIR.

For DREBIN20, we can observe that the LR classifier is
more brittle to the attacks as compared to the DNN. Fig-
ure 2(a) shows that the white-box attack against the LR
achieves a very high effectiveness for very low values of the
L0-norm and that the transfer attack using the UAP generated
for the DNN is also very effective. Actually, for low values
of L0 it is more effective than the white-box attack targeting
the DNN itself. On the other hand, we observe that the DNN
is more robust to the transfer attack with the UAP generated
for the LR and that it requires manipulating ~80 features to
achieve a success rate greater than 80%.

For SLEIPNIR, Figure 2(b) shows similar results, although
in this case, the difference in robustness between the linear
classifier and the DNN is not as significant as in the case
of DREBIN20. Thus, effectiveness of the transfer attack
targeting the DNN with the UAP generated from the LR
achieves a high evasion rate for values of L0 close to 30.

3.3 Discussion
Our results show the importance and impact of UAP attacks
against malware classifiers: they achieve effectiveness com-
parable to their input-specific counterparts, but pose a sig-
nificantly higher threat, as the same perturbation generalizes
across many malware examples. For unprotected models, the

4

0 20 40 60 80
L0 norm

20

40

60

80

100
Cl

as
sif

ica
tio

n
Er

ro
r (

%
)

DREBIN

Src: Linear, Target: Linear
Src: Linear, Target: DNN
Src: DNN, Target: Linear
Src: DNN, Target: DNN

(a) Android

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

SLEIPNIR

Src: Linear, Target: Linear
Src: Linear, Target: DNN
Src: DNN, Target: Linear
Src: DNN, Target: DNN

(b) Windows

Figure 2: Transfer attacks in the feature space for (a) Android
malware (DREBIN) and (b) Windows malware (SLEIPNIR).

extra capacity of the DNN compared to the linear classifier
provides only marginal improvements under white-box set-
tings. However, the transferability analysis shows that the
linear classifier is weaker and that the UAP attacks generated
with the DNN are highly effective. In Appendix A we show
additional results demonstrating a very high transferability of
the attacks between DNN models with different architectures,
further enabling black-box attacks.

The apparent robustness of the DNN with respect to the
linear classifier is not relevant from a practical perspective:
as we show in the subsequent sections, when considering
practical attacks generated in the problem space, the number
of features modified in the feature space as a consequence of
the software manipulations can be important. However, when
applying defensive techniques such as adversarial training,
the DNN offers significant benefits in terms of robustness
compared to linear models.

Our results suggest that systemic vulnerabilities exist in
machine learning malware classifiers that attackers can lever-
age to craft very effective UAPs capable of evading detection,
regardless of the malware they are applied to. This reduces
the cost for the attacker to generate adversarial malware ex-
amples at scale. These results justify the attack methodology
considered in the following sections, where we show that it is
also possible to generate very effective realizable UAP attacks
in the problem space, which pose a significant and real threat.

4 Problem-Space UAPs for Malware

Motivated by the results of feature-space UAP attacks in §3,
next we explore the feasibility of generating problem-space
UAPs to realize real-world evasive malware.

While recent work has shown that feature-space UAPs can
be employed in attacks at training time, such as backdoor
poisoning attacks [82], here we focus solely on the test phase
of the machine learning pipeline. Specifically, we focus on
evasion attacks (§2.1) in which the attacker modifies objects
at test time to induce targeted misclassifications. We envision
a profit-motivated adversary such as a Malware-as-a-Service
(MaaS) provider [40, 50, 79] with two objectives:

O1. They aim to maximize the amount of malware that can
be made undetectable, increasing revenue.

O2. They aim to minimize the cost of making a single mal-
ware undetectable, reducing expenditure.

From these objectives it is clear why UAPs are a natural
choice: UAPs are scalable, amortizing the cost of generating
a perturbation over the total number of evasive malware that it
produces. To quantify the success of these objectives, we use
the Universal Evasion Rate (UER) to measure the universality
of each perturbation as defined in Equation (1).

To this end, we describe a generic methodology for generat-
ing malware UAPs in §4.1, and then consider two experimen-
tal settings across different malware domains. Firstly in §4.2
we consider an attack against an Android classifier in which
the attacker is relatively unconstrained, secondly in §4.3, we
consider an attack against a Windows malware classifier in
which the attacker is more constrained, with limited knowl-
edge of the target model and a more opaque set of available
transformations—typically a MaaS provider would only have
access to binaries where it may be difficult even to discern
symbols and sections [61].

These different settings help us explore the nuances of phys-
ically transforming binaries with UAPs, as well as helping
us gauge how realistic the threat of UAPs really are—across
different domains.

4.1 Methodology for Generating UAPs
Generating UAPs that can be used with real-world malware
is significantly more challenging than generating UAPs in
the feature space (§3). In order for a UAP to be successfully
applied to real-world malware, there must exist some inverse
mapping from the UAP feature vector back to the problem
space; i.e., there must exist some chain of real-world trans-
formations which is capable of inducing the feature-space
change in the chosen object. While the complexity of soft-
ware means that how these real-world transformation chains
are found is largely specific to the given domain, here we
outline a number of common components that make up our
overall methodology.

5

Available transformations. Each domain is initially con-
strained by the available transformations [63]. These repre-
sent the specific toolbox that the attacker has access to, e.g., a
set of gadgets to inject (§4.2) or a tool for performing binary
mutations (§4.3). Formally we define it as a set of domain-
specific problem-space transformations where each transfor-
mation is a function T : Z→ Z that mutates a problem-space
object z ∈ Z into z′ ∈ Z. This set is analogous to an action
space in reinforcement learning (RL) [78]. Generally we as-
sume the attacker is able to add, remove, or modify features
arbitrarily, so long as the resulting perturbations correspond
to a realizable, functioning input object. However, we do not
assume the attacker has access to the original source code, as
they may be a third party operating on behalf of the malware
author (e.g., a MaaS provider). We do not put hard limits
on the size of the perturbation in terms of Lp norm, as these
have been shown to be inappropriate for formulating problem-
space attacks [63]—however, we note that larger perturbations
often correspond to larger transformation sequences which
increase the risk of corrupting the input malware.
UAP search. Next, we perform a greedy search for a chain
of transformations T = Tn ◦Tn−1 ◦ . . .◦T1 which can be uni-
versally applied to a set of true positive malware in order to
flip their labels to benign—this chain is the problem-space
equivalent of a UAP. The chain is constructed such that each
new transformation aims to maximize UER, however whether
this search can be feature/gradient-driven or problem-driven
depends on the set of transformations itself. In order to avoid
experimental bias (e.g., data snooping) we conduct this search
on an exploration set, a partition of the training data [11]. This
also simulates our MaaS scenario in which an adversary is in-
terested in reusing UAPs on future examples which they may
not yet have access to. Note that we avoid splitting the dataset
temporally [62] in order to evaluate the attacks in the absence
of concept drift, as performance degradation induced by the
evolution of malware over time may lead us to overestimate
the UAP success rate.
Feature space analysis. Finally we evaluate the effective-
ness of the discovered UAPs on a separate test set in terms of
the UER. To understand the effect that the UAPs have on the
target classifier—and better understand systemic weaknesses
in the model—we analyze the feature-space perturbations
induced by the problem-space UAPs.

4.2 Android Malware UAP Attack

In the Android ecosystem the attacker is typically less con-
strained in terms of transformations, as they have access to
bytecode with which they can perform more detailed injec-
tions at scale. Due to this, here we devise a strong problem-
space UAP attack against an Android malware detector.
Target Classifier. For this attack we consider DREBIN [10],
an Android malware detector which can achieve state-of-the-
art performance in the presence of concept drift if retrained

with incremental retraining [62]. DREBIN [10] uses a linear
Support Vector Machine (SVM) as the underlying classifier.
For the SVM regularization hyperparameter we use C = 1.
Dataset. We adopt the DREBIN20 Android malware dataset
by Pierazzi et al. [63] which consists of 152,632 benign and
17,625 malicious apps from AndroZoo [5], following the
guidelines of TESSERACT [62] to avoid spatial bias. The
apps are dated between Jan 2017 and Dec 2018 inclusive.
The apps are embedded in the DREBIN [10] feature space
abstraction, i.e., a binary feature space in which Android
components (activities, permissions, URLs, services, etc) are
represented as either present or absent. The apps have been
labeled using a common criteria [53, 62] in which apps are
labeled as malicious if they are detected by 4+ VirusTotal AV
engines and benign if they are completely undetected.1

Available Transformations. We adapt the procedure
from Pierazzi et al. [63] which builds on automated soft-
ware transplantation [14]: code gadgets are first extracted
from a corpus of benign apps and then injected into a host mal-
ware until evasion occurs. Gadgets are extracted recursively
to preserve dependencies up to a certain distance to improve
plausibility. Although this induces side-effect features—extra
features which may help or harm the evasion effort—it en-
sures that the injected gadgets are less conspicuous than, for
example, no-op API calls [65] or unused permissions [34].
We extract 1,395 problem-space gadgets, based on features
considered important with respect to benign examples in our
exploration set, to obtain the final set of available transfor-
mations T = { t0, . . . , t1394 }, where ti denotes the injection of
gadget i into a given malware. Note that none of the transfor-
mations are capable of removal, only addition (i.e., setting a
feature value to 1).

4.2.1 Target Model Baseline

To train the target DREBIN model on DREBIN20 we use
a random stratified split with 33% hold out, partitioning the
dataset into 101,596 and 50,041 examples for training and
test, respectively. As we aim to to discover UAPs which are
effective against the test data without overfitting, we further
divide the training set to use 90% of the examples (91,436)
for the actual training and 10% (10,160) as the exploration set,
set aside for the UAP search. As our adversarial test set, we
consider all true positive malware examples detected by the
trained classifier (4,503 examples). On the non-adversarial
(clean) test data the model achieves an AUC-ROC of 0.981
and 0.855 TPR at 1% FPR.

1We note that while the original labeling criteria [6, 63] discard ‘difficult
to classify’ grayware with between 1 and 3 (Android) and 1 and 39 (Windows)
VirusTotal AV detections, which could result in sampling bias [11], this would
only be to the advantage of the classifiers under attack (i.e., it is harder for
an attacker to evade this classifier). This is also true for the potential spatial
bias [62] present in the original EMBER dataset [6].

6

4.2.2 UAP Search

In Pierazzi et al. [63], gadgets are selected greedily based on
their total benign contribution (i.e., considering side effects)
and added until the decision score of the host malware is suf-
ficiently benign. Here we alter the search strategy to consider
the UER across all true positive malware examples. We itera-
tively apply all possible transformations, at each step selecting
the one maximizing UER across all true positive malware in
the exploration set, until either the maximum length for the
transformation sequence T is reached, 100% UER is reached,
or no remaining transformations can increase UER. We ob-
serve that a maximum sequence length of ten is sufficient.
Despite its simplicity, we find this greedy strategy to be very
effective at searching for successful UAPs at a low compu-
tational cost. The use of more advanced, computationally
demanding search strategies (e.g., genetic algorithms), would
be impractical given the large number of transformations
available (1,395). We assume white-box access to the model,
although the attack can be estimated using local surrogate
models. In §4.2.4 we demonstrate a completely black-box
alternative with comparable attack success.

4.2.3 Results Analysis

The strongest UAP that we discover using the exploration
set produces 4,413 evasive variants on the test set after a
single transformation (98% UER) and achieves 100% UER
after only two transformations. As the attack seems very
strong, achieving 100% UER long before the maximum chain
length of 10 is reached during exploration, we next investigate
the strength of each transformation individually, as shown
in Figure 3. While 46% of the transformations achieve less
than 10% UER, 29% achieve UER of 50% or greater, with
5% of the transformations being at least 90% effective.

We next examine the nature of the feature-space perturba-
tions induced by these strong transformations, to better un-
derstand the weaknesses of the classifier. Figure 4 shows the
relative incidence of features, grouped by feature type, across
the highly effective transformations (i.e., with UER ≥ 90%).
The most common feature types perturbed by the UAPs are
related to API calls, with API calls perturbed by all trans-
formations, API-related permissions perturbed by half, and
a special category of “interesting” API calls being the third
most common. However, the individual features which occur
consistently across all of the top transformations are Activ-
ities, such as activities::CloudAndWifiBaseActivity
(which is present in all but two of these transformations).

Although we reiterate that Lp norm constraints on the per-
turbation are not appropriate for problem-space attacks as
the object can be modified arbitrarily so long as the problem-
space constraints are not violated [63], it is still worth exam-
ining the size of the L0 distortion induced by each transfor-
mation given how strong they appear to be individually.

0 10 20 30 40 50 60 70 80 90 100

Universal Evasion Rates (%)

0
50

100
150
200
250
300
350
400
450
500
550
600
650

Fr
eq

ue
nc

y

Figure 3: Histogram of Universal Evasion Rates (UERs) in-
duced by each available individual problem-space transforma-
tion targeting the linear DREBIN Android malware detector.

Activity API Call API Perm. App Perm. Intent Interesting S + R URL

Feature type

0.00

0.25

0.50

0.75

1.00

In
ci

de
nc

e

Figure 4: Relative incidence of feature perturbations, grouped
by type, induced by the most effective individual transforma-
tions (UER ≥ 90%) targeting DREBIN.

Figure 5 shows the distribution of L0 perturbation sizes,
with a mean and median of 18.5 and 19, respectively. To pro-
vide perspective, the L0 perturbation induced by the strongest
transformation chain is 19; the mean and median L0 norms of
the DREBIN20 dataset are 50 and 49, respectively.

4.2.4 Limited Knowledge Variation

Figure 6 shows the results from a naïve black-box attack in
which T is constructed by selecting gadgets at random with-
out requiring knowledge of each gadget’s benign contribution.
Each line depicts the UER produced by one of 1,000 transfor-
mation chains, tested at each stage of construction. The attack
still appears to be extremely potent, with chains at length 5
achieving a median UER above 90%.

While clearly effective, the Android domain is naturally
more amenable to powerful attacks. The attacker is able to
directly manipulate the bytecode, with established program
analysis tools such as Soot [76] and FlowDroid [12] making
specific alterations relatively straightforward. Additionally,
the toolkit of transformations in the Android attack simplifies
the search, as the UER is monotonic with respect to gadget
injection—there is no risk of a transformation reducing the
evasiveness of the transformation chain.

4.3 Windows Malware UAP Attack
Having demonstrated the impact of problem-space UAPs for
Android, here we explore how effective UAPs can be in the
Windows domain where the attacker is more constrained.

Transforming Windows PE binaries is more challenging
as they are more prone to corruption during problem-space

7

0 5 10 15 20 25 30 35 40 45 50

L0 Perturbation

Figure 5: Distribution of L0 norm perturbations (i.e., number
of changed binary features) induced by the most effective
individual transformations (UER ≥ 90%) targeting DREBIN.

transformation than Android apps, due to lack of access to
source code or bytecode. For example, the effect that an in-
dividual transformation (e.g., ‘UPX pack’) will have on the
input binary, and thus, in the feature space, cannot be calcu-
lated a priori. Because of this fragility, a common semantic-
preserving attack is to simply append random bytes to the end
of the binary [45, 68]. However, these transformations may
be detected and removed before classification. Conversely,
using more sophisticated transformations increases the risk
of disrupting the original malicious semantics and transfor-
mations that subtract malicious features (such as packing or
compression) may equally obfuscate benign features. In the
remainder, we adapt a variety of Windows problem-space
transformations from related work, and use them to build
problem-space UAP attacks.
Target Classifier. For this attack we consider a state-of-the-
art Windows malware detector proposed by Anderson and
Roth [6] which uses a LightGBM model [41] and default
hyperparameters of 100 trees with 31 leaves each.
Dataset. We focus on the EMBER Windows malware dataset
by Anderson and Roth [6] which consists of features extracted
from 400,000 benign and 400,000 malicious PE files (as well
as 300,000 unlabeled examples which we discard). The re-
maining apps are mostly dated between Jan 2017 and Dec
2017 inclusive with ~4% predating 2017. The examples
have been labeled as malicious if they are detected by 40+
VirusTotal AV engines and benign if they are completely
undetected. The EMBER feature space has three broad
types of features related to parsed features (e.g., file size,
header information), format-agnostic histograms (e.g., byte-
value/entropy histograms), and printable strings (e.g., charac-
ter histograms, average length, URL frequency). Note that
unlike DREBIN20, EMBER includes continuous features.

For the UAP search we defined two datasets with 1,100
binaries each classified as malicious by the target model, to
which we can apply problem-space transformations. The files
have been collected from public repositories Corvus Forensics
[24], Google Inc. [32].
Available Transformations. We use the transformations pro-
posed by Anderson et al. [7] and implemented by Labaca-
Castro et al. [47]. The transformations are byte-level mod-
ifications which can be divided into three categories; i) in-
clusion: adding a new unused section, appending bytes with
random length to the space at end of sections or end of the
file, adding unused functions to the import address table (sim-

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

U
E

R
 (%

)

Chains Median 95% confidence interval

Figure 6: Limited Knowledge (LK) attack against linear
DREBIN Android malware classifier. Universal Evasion
Rates (UER) for 1000 random transformation chains up to
length 10. Relatively few transformations are required to
achieve a high UER, highlighted by the median at each stage.

Table 1: Set of available transformations to inject on Windows
PEs to target EMBER-LGBM classifier.

ti EXPLANATION ti EXPLANATION

t0 Append overlay t5 Remove signature
t1 Append imports t6 Remove debug
t2 Rename section t7 UPX pack
t3 Add section t8 UPX unpack
t4 Append section t9 Break optional header

ilar to Hu and Tan [36]); ii) modification: renaming sections
using alternatives parsed from benign files, manipulating the
checksum, debug, and signer info in the header; iii) compres-
sion: packing or unpacking files using UPX [72] with random
compression rates. Table 1 summarizes the complete set of
transformations.

4.3.1 Target Model Baseline

The target model is trained on the EMBER [6] dataset us-
ing 300,000 malicious and 300,000 benign examples. The
remaining 100,000 malicious and 100,000 benign examples
comprise the clean (non-adversarial) test set. As the origi-
nal dataset contains only extracted features, we augment the
dataset with 1,100 malicious binaries downloaded from the
VirusTotal [32] and VirusShare [24] repositories, to facilitate
the problem-space attacks. All of these samples are success-
fully detected by the trained model. This set is partitioned in
two to obtain an exploration set of 100 samples used to search
for UAPs, and an adversarial test set of 1,000 samples used
to validate their effectiveness. On the clean (non-adversarial)
test data the model achieves an AUC-ROC of 0.999, with
0.921 TPR at 0.1% FPR.

8

4.3.2 UAP Search

To search for problem-space UAPs, we apply each of the ten
transformations to each of the samples in the exploration set.
To maximize effectiveness of the UAP, we observe that a
single transformation is unlikely to result in a large number
of evasions (compared to the strength of a single injection in
the Android setting), so relying on the hard labels output by
the classifier to maximize UER directly may not give enough
information to guide the search, as UER is likely to be 0% for
the first search iteration. Given this, we assume that the at-
tacker has access to the confidence scores (soft labels) output
by the classifier and we average these predictions across the
modified examples. The transformation that minimizes the
average confidence is selected, and chosen in the first position
of the transformation chain. In the subsequent rounds, the
same procedure is used to search for the next best transfor-
mation. While access to the classifier’s soft labels may not
always be possible, certain commercial classifiers are known
for providing confidence levels for their predictions [33]. On
the other hand, our results on attack transferability in §3.2
and Appendix A show that effective transfer attacks are pos-
sible. Thus, in LK settings, attackers can train a surrogate
model and perform successful attacks by exploiting trans-
ferability. Alternatively, given that the number of available
transformations is low, the cartesian product of transforma-
tions can be computed until a length of chain is reached, at
the cost of exponentially increasing computational burden.

The number of search rounds r is a product of the size of the
exploration set E, desired transformation chain T, and avail-
able transformations, T —i.e., r = |E| · |T| · |T |. This process
continues until the maximum of |T| = 10 is reached. After
the process completes, the adversarial malware is executed in
a sandbox to verify it has not been corrupted.

We have investigated an additional search strategy using
genetic programming, however it gravitates towards favoring
repeating transformations, which compromise the plausibility
of the adversarial examples. Further results are presented
in Table 4 in Appendix C.

4.3.3 Results Analysis

Here we analyze the effectiveness of the most successful
candidate transformation chains after applying them to the
adversarial test set. We perform experiments using UER at
|T| of 1, 4, and 10, but here analyze UAP vectors of length
four since no improvements were obtained with longer chains.

We examine six candidates: three of the top scoring chains,
two high scoring chains with shorter lengths, and a low scor-
ing chain. Figure 7 shows the success rates for each of the
six chains. The most successful chain (t7, t1, t6, t4) produces
298 evasive variants from 9922 files (30% UER). Chains
(t7, t1, t6, t8) and (t7, t1, t6) both produce 288 evasive variants

2Eight files return parsing errors and have been excluded.

70

60

50

40

30

20

10

0

U
ER

 (
%

)

Evasive Detected Corrupted

(t7, t1, t6, t4)
(t7, t1, t6, t8)
(t7, t1, t6)
(t7, t1)
(t7)
(t7, t1, t3)

Transformation Chains

Figure 7: Best candidate UAP chains in the validation
set against EMBER-LGBM classifier. The leftmost UAP,
(t7, t1, t6, t4), results in successful adversarial examples for
298 malware whereas (t7, t1, t3) is used as a control to demon-
strate how appending specific transformations can drastically
increase the corruption rate and limit the success of a chain.

each (29% UER), yet the latter requires only three transfor-
mations rather than four. This indicates that in the first two
chains, the final transformation does not move the example
significantly toward the decision boundary compared to the
earlier three. An even shorter chain, (t7, t1), also achieves
a relatively high evasion rate of 287 evasive variants (29%)
using only two transformations. As the most common initial
transformation, a single application of t7 produces 270 eva-
sive variants (27.2%), which clearly indicates how susceptible
the model is to UPX packing. This is likely due to the model
paying special attention to the structure of the binary file and
therefore being more sensitive to changes caused by high-
compression ratio packers. These results support prior work
which the distributions of header information for benign and
malicious samples packed with UPX to be very similar [2].

On the other hand, successful initial transformations do not
guarantee a successful chain. For example, appending trans-
formation t3 to the highly effective vector (t7, t1) causes the
evasion rate to decrease by almost 40%. This is because the
combination (t7, t1, t3) produces almost 10 times more corrupt
examples than the alternatives, with 301 non-functional files
compared to an average of 33 across other chains.

The UAP search provides us with very useful insight about
how to bypass a classifier in the problem space using a limited
transformation toolkit. However, to better understand why
some transformations have such a good impact on decreasing
the confidence rate of the model, we analyze the feature-space
perturbations induced by the chains.

We observe that applying a single transformation results in
27.7% of features being modified, on average. This number
does not increase significantly given longer transformation
chains. While this may be caused by the analyzed candidate
chains being relatively similar (as the greedy search discards
most poor candidates), the most important features for the
classifier seem to be perturbed regardless of the chain length.

9

Figure 8: Average delta variation for Windows malware tar-
geting EMBER-LGBM in the exploration set after being in-
jected with each transformation chain. The first five chains
(from left to right) are the best candidates for UAP whereas
the less effective chain, (t7, t1, t3), shows visible differences
within its features. The y-axis represents the mapping of the
feature-space for each malware example.

Furthermore, we analyze the average value of the change
(‘delta variation’) for each feature, for each of the selected
candidate chains. As shown in Figure 8, despite the individual
success rates of each candidates, the features with high varia-
tion appear to be uniform across all chains. However, we do
see a distinct difference in the values of features 800 through
1,000 for the less effective candidate (t7, t1, t3). This feature
group relates to information about the binary’s sections, such
as names and sizes, which appear to correspond to the final
transformation t3, ‘add section’.

5 Evaluating Robustness to UAPs

After demonstrating the brittleness of ML malware classifiers
against feature- and problem-space UAPs, we now evalu-
ate strategies to improve the resilience of machine learning
models against such perturbations. In this section we aim to
explore whether we can utilize problem-space knowledge to
harden different types of classifiers against UAP attacks.

We introduce our approach to improve defenses, leveraging
the UAP attacks in both Android and Windows settings as de-
scribed in §4. By measuring the effectiveness of new adaptive
attacks, after models have been hardened, we determine how
each strategy contribute to the robustness of the classifier.

5.1 Adversarial Training with UAPs

A promising mitigation against adversarial examples is adver-
sarial training [31, 46, 52]: the introduction of evasive exam-
ples into the training process to adjust the decision boundary
to cover pockets of adversarial space close to legitimate ex-
amples. However, uniformly applying adversarial training to
all regions close to the decision boundary can greatly alter

the classifier, such that performance suffers on goodware or
previously correctly detected malware. Moreover, effort is
wasted in securing regions of the feature space which do not
intersect with the feasible problem-space region of realizable
attacks [63]. Our UAPs show that the classifier has specific
weaknesses against certain feature types (e.g., API calls), so
we posit that we can use our UAPs to ‘patch’ the model against
the specific toolkit of available transformations, rather than
applying adversarial training indiscriminately. This would
significantly raise the bar for attackers, forcing them to obtain
a new set of transformations which may not even be possible.

While different ML algorithms necessitate specific adjust-
ments, our process can broadly be defined as follows. i)
Generate problem-space UAPs using a greedy search on the
exploration set to calculate the strongest transformation chain,
using the toolkit of available transformations, to quantify the
model’s initial robustness. ii) Adversarially train the model,
either by directly introducing newly generated UAPs to the
training process (§5.2) or by using synthetic examples de-
rived from the statistical distribution of examples in the first
step (§5.3). iii) Evaluate the robust models considering an
adaptive attacker, by performing a fresh search for UAP at-
tacks. We focus on the effectiveness of the UAP attack in
terms of UER, and the performance loss incurred on clean
data in terms of AUC-ROC and TPR at a fixed FPR of 1%.

For how many adversarial examples to include during the
fine-tuning we consider two settings. In the pure setting, only
adversarial examples are used to represent the malicious class.
This gives the model the best chance of identifying adversarial
inputs, but can cause the TPR to degrade as the model loses
the ability to identify clean malware. To mitigate this we also
consider an alternative mixed setting [46] where clean and
adversarial malware examples are interleaved at a ratio of 1:1.

5.2 Hardening DREBIN against UAPs

Here we instantiate our adversarial training-based defense
on the Android malware classifiers. We hypothesize that the
linear DREBIN model will not be receptive to adversarial
training, as the linear hyperplane will not be flexible enough
to adapt to the adversarial inputs, i.e., it will begin to ‘for-
get’ patterns of adversarial inputs seen earlier in the training
process [44]. To test this, we apply our defense to both the
linear model from §4.2, and the nonlinear model originally
described in §3 which we hereby refer to as DREBIN-DNN.
Both models are implemented using PyTorch [60].

We perform the following steps during each of the the last
N epochs of the training procedure. At the start of each mini-
batch, we apply our attack procedure to the partially trained
model and search for the most effective UAP transformation
sequence, i.e., the UAP that maximizes UER across all true
positive examples in the minibatch. Next, this UAP is applied
to the minibatch malware examples (50% or 100% in the
mixed and pure settings, respectively).

10

Results. We repeat the white-box attack from §4.2 against
both linear and nonlinear models to act as a baseline.3 We
also compare against a number of defenses obtained by gen-
erating adversarial examples in the feature space instead of
the problem space. These defenses take two parameters: the
L0 constraint on the perturbation size and the percentage of
adversarial examples to include during the adversarial train-
ing procedure. For these we consider L0 constraints of 20 and
40, and mixed/pure adversarial proportions.

Table 2 shows the results of this procedure applied to the
linear DREBIN classifier as well as the nonlinear DREBIN-
DNN, for the last N = 1, 3, and 5 epochs of training, as well
as the UER of the freshly applied adaptive white box attacks
(also depicted in Figure 9a). The close results for N = 3 and
N = 5 suggest an upper bound in the robustness gained, so it
is likely that further epochs will result in diminishing returns.
The results also confirm our hypothesis that the linear model is
not as amenable to adversarial training as the nonlinear model.
The linear DREBIN model shows a larger performance loss on
the clean examples compared to the other models (except for
L0 = 40 Pure), and while the robustness is improved for small
sequences, UER for the sequences of length 10 is > 80%.

Overall, the defense providing the greatest improvement in
robustness is L0 = 40 Pure, but it comes with a significant per-
formance cost for non-adversarial examples. L0 = 40 Mixed
offers a better trade-off with a fairly large increase in robust-
ness without the performance loss. The other feature-space
defenses retain their performance on the non-adversarial ex-
amples, but do not show a significant gain in robustness. How-
ever, our approach demonstrates an even greater trade-off than
L0 = 40 Mixed, with a similarly small performance loss on
clean data, but far greater gains in robustness, reducing the
maximum UER of length 10 chains from 99.5% to ~20%.

5.3 Hardening EMBER against UAPs
We additionally explore how the concept of introducing
problem-space information to adversarial training can be
adapted and extended beyond neural networks and applied to
different machine learning models. Hence, we have adjusted
the process to make state-of-the-art classifiers in the Windows
domain more resilient to such attacks.

For Windows PE binaries, boosting models such as LGBM
have proven to be highly accurate for malware classification
in this domain [6, 7]. However, generating adversarial ex-
amples in the problem space is significantly more expensive
than in the feature space for Windows than it is for Android.
Additionally, while the non-linearity of LGBM should be
receptive to adversarial training, the model is not trained in
batches across multiple epochs as is the DNN.

To overcome this limitation, we generate an approximation
of the feature-space perturbations induced by the problem-

3For completeness, Appendix B also demonstrates the vulnerability of
the nonlinear model against our limited knowledge attack.

1 2 3 4 5 6 7 8 9 10

Length of transformation chain

0

10

20

30

40

50

60

70

80

90

100

U
E

R
 (%

)

DREBIN-DNN
DREBIN-DNN L0 = 20 Pure
DREBIN-DNN L0 = 40 Pure

DREBIN-DNN L0 = 20 Mixed
DREBIN-DNN L0 = 40 Mixed
DREBIN-DNN Iter N = 1

DREBIN-DNN Iter N = 3
DREBIN-DNN Iter N = 5

(a) DREBIN-DNN Android classifiers

(b) EMBER-LGBM Windows classifiers

Figure 9: Adaptive attacks against (a) DREBIN-DNN and
(b) EMBER classifiers showing increasing Universal Evasion
Rates (UER) at varying lengths of problem-space transforma-
tion chain. Corresponding performance on clean data is in
Tables 2–3.

space toolkit. For this we create a statistical model where, for
each feature, we compute the probability of the feature being
modified as a result of the problem-space UAP attack. At
training time, we generate adversarial malware in the feature
space by sampling random perturbations using this statistical
model. This allows us to significantly reduce the number of
problem-space adversarial objects that need to be generated.
Note that our approximation does not take into account pos-
sible interactions between features in the feature space, i.e.,
the statistical model assumes independence across features,
and although this is likely not always the case, our empirical
results show that even this simple statistical model allows us
to harden the ML models against adaptive UAP attacks.
Results. Similar to the Android feature-space in §5.2 we
perform adversarial training in Windows using both strategies:
pure and mixed. As expected in the problem space, the former
model incurs a heavy cost for clean detection performance,
with an AUC-ROC of .624, while the latter retains better

11

Table 2: Comparison of our problem-space defenses against a set of feature-space defenses and undefended models, showing
performance on clean examples (AUC-ROC, TPR) and robustness against an adaptive attacker (UER at |T| of 1, 4, and 10).

MODEL AUC-ROC TPR at 1% FPR UER1 UER4 UER10

Undefended DREBIN 0.981 0.855 98.7% 100% 100%
DREBIN-DNN 0.992 0.900 78.8% 97.3% 99.5%

Feature-space defenses

DREBIN-DNN L0 = 20 Pure 0.989 0.843 27.6% 85.1% 96.1%
DREBIN-DNN L0 = 40 Pure 0.903 0.347 3.6% 3.6% 3.6%
DREBIN-DNN L0 = 20 Mixed 0.990 0.872 46.9% 75.3% 89.2%
DREBIN-DNN L0 = 40 Mixed 0.990 0.877 18.4% 38.0% 66.6%

Problem-space defenses

DREBIN Iter N = 1 0.978 0.775 23.0% 70.4% 95.7%
DREBIN Iter N = 3 0.978 0.766 21.0% 47.0% 87.0%
DREBIN Iter N = 5 0.978 0.761 17.4% 35.1% 82.6%

DREBIN-DNN Iter N = 1 0.990 0.874 5.3% 17.9% 53.5%
DREBIN-DNN Iter N = 3 0.990 0.871 1.6% 7.7% 19.7%
DREBIN-DNN Iter N = 5 0.990 0.872 1.7% 9.3% 20.4%

Table 3: Comparison between baseline (undefended) models and our problem-space defenses against an adaptive attacker (UER
at |T| of 1, 4, and 10) using a greedy UAP search strategy. Results using genetic programming are presented in Appendix C.

MODEL AUC-ROC TPR UER1 UER4 UER10

Undefended EMBER-LGBM C = .90 0.999 0.921 4.0% 34.1% 32.4%
EMBER-LGBM C = .87 0.999 0.930 2.6% 20.3% 20.0%

Problem-space defenses EMBER-LGBM C = .90 Mixed 0.988 0.836 0.0% 0.1% 0.01%
EMBER-LGBM C = .87 Mixed 0.998 0.853 2.6% 1.6% 1.5%

performance at .853. Hence, we focus only on mixed.
As observed in Table 3 we consider two decision thresholds,

C = .90 often used in previous work [6, 7, 47] and C = .87,
corresponding to 0.1% FPR in our setting. We note that it is
common practice to use a lower FPR threshold for Windows
than in Android [e.g., 6, 7, 47] and that classifiers can leverage
FPR as low as 10−5 to reduce the impact of mistakes [39].

Following best practices, we perform a fresh adaptive at-
tack against the hardened model. The most effective trans-
formation chains found, (t3, t3, t0) and (t3, t3, t4, t8), are still
successfully detected by the model and do not represent mean-
ingful threats. Furthermore, we observe in Figure 9b that the
model becomes much better at identifying false negatives, as
shown by the decrease in UER compared to the baseline. In
fact, 99.8% of the attempts are successfully detected. Despite
the capacity of the new model to successfully detect most
adversarial examples, compared to the DNN models used
for DREBIN, in this case the LGBM offers less flexibility to
adapt the UAPs during training, which has a negative impact
on the detection of genuine malware, i.e., the TPR evaluated
on genuine malware decreases.

6 Discussion

Modeling the attacker’s constraints. Unlike in computer
vision applications, the generation of adversarial examples
in the malware domain is subject to specific problem-space

constraints that limit how input objects can be modified, to
generate realistic working software that preserves malicious
functionality [e.g., 25, 48]. Because of this, analyzing feature-
space robustness of ML models to certain adversarial exam-
ples provides an unrealistic view of the models’ vulnerabil-
ities. Many of the attacks available in the feature space are
potentially infeasible in the problem space and additionally,
modeling appropriate attacker constraints in the feature space
can be prohibitively challenging. For example, EMBER con-
tains a mixture of discrete and continuous features, making
it difficult to model comprehensive constraints (e.g., using a
combination of Lp-norms), even when ignoring some of the
problem-space constraints.
UAP attacks. Our experimental results in §4 show that UAP
attacks represent an important and practical threat against
ML-based malware detectors. However, our results report a
disparity on the effectiveness of the attacks for Windows and
Android malware. For DREBIN we can craft very successful
UAP attacks that, in some cases achieve 100% UER. In con-
trast, for EMBER the UER of the attacks is approximately
30%. There are two important reasons for this behavior. First,
for Windows malware a more limited set of transformations is
available to manipulate the malware. Due to the closed-source
nature of PE files the transformations need to be designed at a
byte-level, which drastically reduces the attack surface for this
platform. Secondly, the application of these transformations
is more likely to produce non-functional malware. In contrast,
the Android platform allows for a greater number of transfor-

12

mations that can be used to generate adversarial malware, and
the addition of these does not have as significant an impact on
malware functionality. Our results on Android demonstrate
the impact of our contribution as the effectiveness of real-
izable UAP attacks is comparable to that for input-specific
attacks, but at a much reduced cost for the attacker, as the
same adversarial perturbation can be successfully applied to
make many malware evasive. This also evidences a systemic
vulnerability in malware detectors. While the effectiveness
of the UAP attacks in Windows may appear more modest,
this is not necessarily due to the methodology we propose but
to the limitations in the tooling to transform PE files. The
use of input-specific attacks may not always bring significant
improvements in terms of effectiveness: reported evasion
rates are typically close to 24% [7, 47] and while recent ap-
proaches [49] may achieve 40% evasion, the benefit of such
improvements may not compensate the extra computational
cost of training RL agents and computing fresh attacks indi-
vidually for many inputs.
Defenses. We show that our methodology for adversarially
training the models allows us to harden the model against
UAP attacks generated with the considered transformation
set. However, we cannot guarantee robustness against other
possible transformations that could become available for the
attackers, i.e., we cannot guarantee robustness against un-
known unknowns. Compared to adversarial training in the
feature space, our methodology focuses on “patching” those
UAP vulnerabilities that are more relevant from a practical
perspective, without having a significant negative impact on
the detection of clean malware, in particular for DNNs. While
we explore limited knowledge attacks in our work, we did not
consider transfer attacks in the problem space, which can pro-
vide a more comprehensive view on the robustness of these
models; although the results in the feature space suggest that
the susceptibility to UAPs across different models can be sim-
ilar (Appendix A) enabling successful transfer attacks. Also,
it would be interesting to analyze if the application of a simi-
lar approach can be appropriate for mitigating input-specific
attacks. These last two points are left as future work.

7 Related Work

Adversarial Examples for Malware. The vulnerabilities
of machine learning systems to different threats, both at
training and test time, have been investigated for almost 15
years [15, 16, 37], attracting a higher attention in the research
community since Szegedy et al. [71] and Biggio et al. [17]
showed the existence and weakness of machine learning al-
gorithms to adversarial examples. Although the literature in
adversarial machine learning has put the focus on computer
vision applications, the security community has also started
to evaluate the problem on different malware variants, includ-
ing (but not limited to) Android malware [26, 34, 63, 81],
Windows malware [25, 45, 47, 48, 64], PDFs [17, 70, 80],

NIDS [8, 9, 23], and malicious Javascript [28]. It is important
to observe that one peculiarity of the malware domain is that
feature mapping functions are generally not invertible and
not differentiable. This implies that translating an adversarial
feature vector in the feature space to an actual malware in
the problem space is significantly more complex. To support
this challenge, Pierazzi et al. [63] propose a general frame-
work for problem-space attacks which also clarifies which
constraints need to be defined when considering attacks that
handle problem-space objects. In our study, we are interested
in studying problem-space attacks, and refer to this framework
to define our threat model and constraints.
Universal Adversarial Perturbations. Moosavi-Dezfooli
et al. [55] showed the existence of UAPs, where a single
adversarial perturbation applied over a large set of inputs
can cause the target model to misclassify a large fraction of
those inputs. UAPs expose the systemic vulnerabilities of the
model that can be exploited regardless of the input [22, 38].
UAP attacks are the basis of many physically realizable
attacks across different domains, such as image classifica-
tion [13, 19, 22, 42, 56], object detection [27, 51, 69], percep-
tual ad-blocking [74], LiDAR-based object detection [20, 75],
NLP tasks [77], and audio or speech classification [1, 58].
Hou et al. [35] recently explored the use of UAPs in the
feature-space of Android malware context. The authors ex-
tracted API and hardware information to generate a binary
vector that will be modified to attack the model with per-
fect knowledge. They attack three models and report full
evasion only when targeting the DREBIN model after nine
transformations. The rest two target models, namely DLM
and MaMaDroid, required up to 65 and 100 perturbations
respectively to achieve close to 100% rate of adversarial eva-
sions. Compared to them, we report more efficient attacks and
a deeper analysis comparing the impact of UAPs and input-
specific attacks and analysing the attack’s transferability, both
for Windows and Android malware.

Different defenses have been proposed to mitigate UAP
attacks, most of them only explored in the context of computer
vision applications. Some of these defenses aim to detect UAP
attacks by trying to denoise the inputs [3, 18] or, in the case
of SentiNet [21] aiming to detect adversarial patches in image
classification. Other sets of defense aim to harden the model
by performing universal adversarial training [57, 67].

8 Conclusion

After demonstrating that UAPs and input-specific attacks have
similar effectiveness in the feature space, we systematically
generate and evaluate problem-space adversarial malware
using UAPs for both Android and Windows domains. We
build on the results to propose a defense: a new variant of
adversarial training, also highlighting that nonlinear models
such as DNNs are more appropriate than linear classifiers as
robust models against problem-space malware UAP attacks.

13

Acknowledgments

This research has been partially supported by the EC
H2020 Project CONCORDIA (GA 830927) and the UK
EP/L022710/2 and EP/P009301/1 EPSRC research grants.

References

[1] S. Abdoli, L. G. Hafemann, J. Rony, I. B. Ayed, P. Car-
dinal, and A. L. Koerich. Universal adversarial audio
perturbations. CoRR, abs/1908.03173, 2019.

[2] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Or-
tolani, D. Balzarotti, G. Vigna, and C. Kruegel. When
malware is packin’ heat; limits of machine learning clas-
sifiers based on static analysis features. In NDSS. The
Internet Society, 2020.

[3] N. Akhtar, J. Liu, and A. Mian. Defense against Uni-
versal Adversarial Perturbations. In CVPR, pages 3389–
3398, 2018.

[4] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M.
O’Reilly. Adversarial deep learning for robust detection
of binary encoded malware. In 2018 IEEE Security and
Privacy Workshops (SPW), pages 76–82. IEEE, 2018.

[5] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon.
Androzoo: Collecting millions of android apps for the
research community. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories,
MSR ’16. ACM, 2016.

[6] H. S. Anderson and P. Roth. Ember: an open dataset
for training static pe malware machine learning models.
arXiv preprint arXiv:1804.04637, 2018.

[7] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and
P. Roth. Learning to evade static pe machine learning
malware models via reinforcement learning. arXiv
preprint arXiv:1801.08917, 2018.

[8] G. Apruzzese and M. Colajanni. Evading botnet detec-
tors based on flows and random forest with adversarial
samples. In 2018 IEEE 17th International Symposium
on Network Computing and Applications (NCA), pages
1–8. IEEE, 2018.

[9] G. Apruzzese, M. Andreolini, M. Marchetti, A. Venturi,
and M. Colajanni. Deep reinforcement adversarial learn-
ing against botnet evasion attacks. IEEE Transactions
on Network and Service Management, 17(4):1975–1987,
2020.

[10] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck. DREBIN: effective and explainable detection
of android malware in your pocket. In NDSS. The
Internet Society, 2014.

[11] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pier-
azzi, C. Wressnegger, L. Cavallaro, and K. Rieck.
Dos and don’ts of machine learning in computer se-
curity. CoRR, abs/2010.09470, 2020. URL http:
//arxiv.org/abs/2010.09470.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. L. Traon, D. Octeau, and P. D. McDaniel.
Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
PLDI, pages 259–269. ACM, 2014.

[13] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Syn-
thesizing Robust Adversarial Examples. In Interna-
tional Conference on Machine Learning, pages 284–293,
2018.

[14] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and
J. Petke. Automated software transplantation. In ISSTA,
pages 257–269. ACM, 2015.

[15] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. D. Tygar. Can Machine Learning be Secure? In
Procs. of the Symposium on Information, Computer and
Communications Security, pages 16–25, 2006.

[16] B. Biggio and F. Roli. Wild patterns: Ten years af-
ter the rise of adversarial machine learning. Pattern
Recognition, 84:317–331, 2018.

[17] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In Joint Euro-
pean conference on machine learning and knowledge
discovery in databases, pages 387–402. Springer, 2013.

[18] T. Borkar, F. Heide, and L. Karam. Defending against
universal attacks through selective feature regeneration.
In CVPR, pages 709–719, 2020.

[19] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer.
Adversarial Patch. arXiv preprint arXiv:1712.09665,
2017.

[20] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu,
and B. Li. Adversarial Objects against LiDAR-
based Autonomous Driving Systems. arXiv preprint
arXiv:1907.05418, 2019.

[21] E. Chou, F. Tramèr, and G. Pellegrino. Sentinet: Detect-
ing Localized Universal Attacks against Deep Learning
Systems. In 2020 IEEE Security and Privacy Workshops
(SPW), pages 48–54. IEEE, 2020.

[22] K. T. Co, L. Muñoz-González, S. de Maupeou, and
E. C. Lupu. Procedural noise adversarial examples for
black-box attacks on deep convolutional networks. In
CCS, pages 275–289. ACM, 2019.

14

http://arxiv.org/abs/2010.09470
http://arxiv.org/abs/2010.09470

[23] I. Corona, G. Giacinto, and F. Roli. Adversarial at-
tacks against intrusion detection systems: Taxonomy,
solutions and open issues. Information Sciences, 239:
201–225, 2013.

[24] Corvus Forensics. Virusshare. https://
virusshare.com/, 2011. (last visited Jan. 22, 2021).

[25] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Ar-
mando, and F. Roli. Adversarial exemples: A survey
and experimental evaluation of practical attacks on ma-
chine learning for windows malware detection. arXiv
preprint arXiv:2008.07125, 2020.

[26] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp,
K. Rieck, I. Corona, G. Giacinto, and F. Roli. Yes,
machine learning can be more secure! a case study on
android malware detection. IEEE Transactions on De-
pendable and Secure Computing, 16(4):711–724, 2017.

[27] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust
Physical-World Attacks on Deep Learning Visual Clas-
sification. In CVPR, pages 1625–1634, 2018.

[28] A. Fass, M. Backes, and B. Stock. Hidenoseek: Camou-
flaging malicious javascript in benign asts. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1899–1913, 2019.

[29] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner.
A survey of mobile malware in the wild. In Proceedings
of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, pages 3–14, 2011.

[30] M. Fossi, E. Johnson, D. Turner, T. Mack, J. Blackbird,
D. McKinney, M. K. Low, T. Adams, M. P. Laucht,
and J. Gough. Symantec report on the underground
economy. Symantec Corporation, 51, 2008.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and Harnessing Adversarial Examples. In ICLR, 2015.

[32] Google Inc. Virustotal. https://
www.virustotal.com/, 2004. (last visited Jan.
22, 2021).

[33] Google Inc. VirusTotal Binary Analysis. https://
www.virustotal.com/gui/search/malware/, 2022,
last access Jan. 31, 2022.

[34] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. D. McDaniel. Adversarial examples for malware
detection. In ESORICS, Lecture Notes in Computer
Science, 2017.

[35] R. Hou, X. Xiang, Q. Zhang, J. Liu, and T. Huang. Uni-
versal adversarial perturbations of malware. In Interna-
tional Symposium on Cyberspace Safety and Security,
pages 9–19. Springer, 2020.

[36] W. Hu and Y. Tan. Generating adversarial malware
examples for black-box attacks based on gan. arXiv
preprint arXiv:1702.05983, 2017.

[37] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein,
and J. D. Tygar. Adversarial Machine Learning. In
Procs. of the Workshop on Security and artificial intelli-
gence, pages 43–58, 2011.

[38] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran,
and A. Madry. Adversarial examples are not bugs,
they are features. In Advances in Neural Information
Processing Systems, pages 125–136, 2019.

[39] Kaspersky. Machine Learning for Malware Detection.
https://media.kaspersky.com/en/enterprise-
security/Kaspersky-Lab-Whitepaper-Machine-
Learning.pdf, 2021, last access Dec. 11, 2021.

[40] Kaspersky Lab. Adwind malware-as-a-service
hits more than 400,000 users globally. https:
//www.kaspersky.co.uk/blog/adwind-rat/6731/,
2021. (last visited Jan. 22, 2021).

[41] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in neu-
ral information processing systems, pages 3146–3154,
2017.

[42] V. Khrulkov and I. V. Oseledets. Art of singular vectors
and universal adversarial perturbations. In CVPR, pages
8562–8570. IEEE Computer Society, 2018.

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

[44] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness,
G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, and R. Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796,
2016.

[45] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca,
G. Giacinto, C. Eckert, and F. Roli. Adversarial malware
binaries: Evading deep learning for malware detection
in executables. In EUSIPCO, pages 533–537. IEEE,
2018.

[46] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversar-
ial machine learning at scale. CoRR, abs/1611.01236,
2016.

[47] R. Labaca-Castro, C. Schmitt, and G. Dreo. Aimed:
Evolving malware with genetic programming to evade
detection. In 2019 18th IEEE International Confer-
ence On Trust, Security And Privacy In Computing

15

https://virusshare.com/
https://virusshare.com/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/gui/search/malware/
https://www.virustotal.com/gui/search/malware/
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://www.kaspersky.co.uk/blog/adwind-rat/6731/
https://www.kaspersky.co.uk/blog/adwind-rat/6731/

And Communications/13th IEEE International Confer-
ence On Big Data Science And Engineering (Trust-
Com/BigDataSE), pages 240–247. IEEE, 2019.

[48] R. Labaca-Castro, C. Schmitt, and G. D. Rodosek.
Armed: How automatic malware modifications can
evade static detection? In 2019 5th International Confer-
ence on Information Management (ICIM), pages 20–27.
IEEE, 2019.

[49] R. Labaca-Castro, S. Franz, and G. D. Rodosek. Aimed-
rl: Exploring adversarial malware examples with rein-
forcement learning. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 37–52. Springer, 2021.

[50] Lastline, Inc. Malware-as-a-service: The 9-to-5 of
organized cybercrime. https://www.lastline.com/
blog/malware-as-a-service-the-9-to-5-of-
organized-cybercrime/, 2021. (last visited Jan. 22,
2021).

[51] X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen.
Dpatch: An Adversarial Patch Attack on Object Detec-
tors. arXiv preprint arXiv:1806.02299, 2018.

[52] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[53] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz,
R. Bachwani, R. Faizullabhoy, L. Huang, V. Shankar,
T. Wu, G. Yiu, A. D. Joseph, and J. D. Tygar. Reviewer
integration and performance measurement for malware
detection. In DIMVA, volume 9721 of Lecture Notes in
Computer Science, pages 122–141. Springer, 2016.

[54] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In
CVPR, pages 86–94. IEEE Computer Society, 2017.

[55] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1765–1773, 2017.

[56] K. R. Mopuri, U. Ojha, U. Garg, and R. V. Babu. NAG:
network for adversary generation. In CVPR, pages
742–751. IEEE Computer Society, 2018.

[57] C. K. Mummadi, T. Brox, and J. H. Metzen. Defending
against Universal Perturbations with Shared Adversarial
Training. In International Conference on Computer
Vision, pages 4928–4937, 2019.

[58] P. Neekhara, S. Hussain, P. Pandey, S. Dubnov, J. J.
McAuley, and F. Koushanfar. Universal adversarial

perturbations for speech recognition systems. In IN-
TERSPEECH, pages 481–485. ISCA, 2019.

[59] N. Papernot, P. McDaniel, and I. Goodfellow. Trans-
ferability in Machine Learning: From Phenomena to
Black-box Attacks using Adversarial Samples. arXiv
preprint arXiv:1605.07277, 2016.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pages
8024–8035, 2019.

[61] J. Patrick-Evans, L. Cavallaro, and J. Kinder. Probabilis-
tic naming of functions in stripped binaries. In Annual
Computer Security Applications Conference (ACSAC),
2020.

[62] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and
L. Cavallaro. TESSERACT: eliminating experimental
bias in malware classification across space and time. In
USENIX Security Symposium, pages 729–746. USENIX
Association, 2019.

[63] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cav-
allaro. Intriguing properties of adversarial ml attacks
in the problem space. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1332–1349. IEEE,
2020.

[64] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici.
Generic black-box end-to-end attack against state of the
art api call based malware classifiers. In International
Symposium on Research in Attacks, Intrusions, and De-
fenses. Springer, 2018.

[65] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici.
Generic black-box end-to-end attack against state of the
art API call based malware classifiers. In RAID, Lecture
Notes in Computer Science, 2018.

[66] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson,
C. Studer, L. S. Davis, G. Taylor, and T. Goldstein.
Adversarial Training for Free! In NeurIPS, 2019.

[67] A. Shafahi, M. Najibi, Z. Xu, J. Dickerson, L. S. Davis,
and T. Goldstein. Universal Adversarial Training. In
AAAI, 2020.

[68] Skylight Cyber. Cylance, i kill you! https:
//skylightcyber.com/2019/07/18/cylance-i-
kill-you/, 2019. (last visited Jan. 22, 2021).

[69] D. Song, K. Eykholt, I. Evtimov, E. Fernandes, B. Li,
A. Rahmati, F. Tramer, A. Prakash, and T. Kohno.

16

https://www.lastline.com/blog/malware-as-a-service-the-9-to-5-of-organized-cybercrime/
https://www.lastline.com/blog/malware-as-a-service-the-9-to-5-of-organized-cybercrime/
https://www.lastline.com/blog/malware-as-a-service-the-9-to-5-of-organized-cybercrime/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/

Physical adversarial examples for object detectors. In
12th {USENIX} Workshop on Offensive Technologies
({WOOT} 18), 2018.

[70] N. Šrndic and P. Laskov. Detection of malicious pdf files
based on hierarchical document structure. In Proceed-
ings of the 20th Annual Network & Distributed System
Security Symposium, pages 1–16. Citeseer, 2013.

[71] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[72] The UPX Team. Upx: the ultimate packer for executa-
bles. https://upx.github.io/, 1996. (last visited
Jan. 22, 2021).

[73] F. Tramèr and D. Boneh. Adversarial Training and
Robustness for Multiple Perturbations. In NeurIPS,
2019.

[74] F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and
D. Boneh. Adversarial: Perceptual Ad Blocking Meets
Adversarial Machine Learning. In Conference on Com-
puter and Communications Security, pages 2005–2021,
2019.

[75] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang,
R. Du, F. Cheng, and R. Urtasun. Physically Realizable
Adversarial Examples for LiDAR Object Detection. In
CVPR, pages 13716–13725, 2020.

[76] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode optimization
framework. In CASCON, page 13. IBM, 1999.

[77] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and
S. Singh. Universal adversarial triggers for attacking
and analyzing NLP. In EMNLP/IJCNLP (1), pages
2153–2162. Association for Computational Linguistics,
2019.

[78] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanc-
tot, and N. de Freitas. Dueling network architectures
for deep reinforcement learning. In ICML, volume 48
of JMLR Workshop and Conference Proceedings, pages
1995–2003. JMLR.org, 2016.

[79] Webroot Inc. Malware as a service: As easy as
it gets. https://www.webroot.com/blog/2016/03/
31/malware-service-easy-gets/, 2021. (last vis-
ited Jan. 22, 2021).

[80] W. Xu, Y. Qi, and D. Evans. Automatically evading
classifiers. In Proceedings of the 2016 network and
distributed systems symposium, volume 10, 2016.

[81] W. Yang, D. Kong, T. Xie, and C. A. Gunter. Malware
detection in adversarial settings: Exploiting feature evo-
lutions and confusions in android apps. In Proceedings
of the 33rd Annual Computer Security Applications Con-
ference, pages 288–302, 2017.

[82] X. Zhang, A. Mian, R. Gupta, N. Rahnavard, and
M. Shah. Cassandra: Detecting trojaned networks
from adversarial perturbations. CoRR, abs/2007.14433,
2020.

APPENDIX

A Transferability Between DNN Models

To complete our analysis of the vulnerabilities of the malware
classifiers the feature space (§3), we perform an additional
experiment on the transferability of UAPs across different
DNN model architectures. For this, we use three architectures:
1) That used for our experiments in §3 (we refer to this model
architecture as the standard model) with: n f ×1,024×512×
1. 2) A smaller DNN with the same number of layers as the
standard model but with 8-times less units at each layer (we
refer to it as the small model) with: n f ×256×128×1. 3) A
deeper DNN model compared to the standard one (we refer
to is as the deep model) with: n f ×512×256×128×64×1.

We use the same datasets and settings as in §3.2. We
observe that the performance of the three models is very
similar in all cases and the model architecture does not have a
significant impact on the performance of the malware detector.
Thus, for SLEIPNIR the AUC-ROC on the test set is 0.974,
0.974, and 0.973 for the standard, small, and deep model
respectively. For DREBIN the test AUC-ROC is 0.989, 0.986,
and 0.987 for the standard, small, and deep model.

As in §3.2 we generate UAPs using the three models, and
then perform transfer attacks. The results in Figures 11 and 12
show that the deep model is slightly more robust than the
other two (especially for DREBIN), but the improvements are
marginal and for L0 = 40 the UER for both the white-box and
transfer attacks is almost 100% in all cases and for all models.
We also observe that the attack transferability is very good,
especially for the standard and small model and the transfer
attacks are almost as effective as the white-box ones.

Our experimental results show that the model architecture
does not have a significant impact on the robustness of the
classifier to UAP attacks, and the high transferability of the
attacks enables black-box attacks.

B Additional Android Result

Figure 10 reports Limited Knowledge (LK) attack against a
nonlinear DREBIN Android malware classifier, implemented
as a DNN with 2 hidden layers. Universal Evasion Rates

17

https://upx.github.io/
https://www.webroot.com/blog/2016/03/31/malware-service-easy-gets/
https://www.webroot.com/blog/2016/03/31/malware-service-easy-gets/

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

DREBIN - UAP source: DNN Standard
Standard
Deep
Small

(a) Android

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

DREBIN - UAP source: DNN Small

Standard
Deep
Small

(b) Android

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

DREBIN - UAP source: DNN Deep
Standard
Deep
Small

(c) Android

Figure 11: Android malware (DREBIN): Transfer attacks
using UAPs from (a) the standard DNN, (b) the small DNN,
and (c) the deeper DNN.

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

SLEIPNIR - UAP source: DNN Standard

Standard
Deep
Small

(a) Windows

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

SLEIPNIR - UAP source: DNN Small

Standard
Deep
Small

(b) Windows

0 10 20 30 40
L0 norm

20

40

60

80

100

Cl
as

sif
ica

tio
n

Er
ro

r (
%

)

SLEIPNIR - UAP source: DNN Deep

Standard
Deep
Small

(c) Windows

Figure 12: Windows malware (SLEIPNIR): Transfer attacks
using UAPs from (a) the standard DNN, (b) the small DNN,
and (c) the deeper DNN.

18

Table 4: Adaptive attack in the Windows domain (UER at |T| of 4 and 10) using a genetic programming (GP) approach for UAP
search.

MODEL SEARCH AUC-ROC TPR UER1 UER4 UER10

EMBER-LGBM C = .90 GP 0.999 0.921 –% 0.6% 3.5%
EMBER-LGBM C = .87 GP 0.999 0.930 –% 0.0% 0.1%

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

U
E

R
 (%

)

Chains Median 95% confidence interval

Figure 10: Limited Knowledge (LK) attack against a nonlin-
ear DREBIN Android malware classifier.

(UER) are shown for 1,000 random transformation chains up
to length 10. Relatively few transformations are required to
achieve a high UER, highlighted by the median at each stage.

Compared to the linear model (Figure 6), the nonlinear model
seems even more susceptible to the LK attack, however the
flexibility of the model enables us to devise a defense which
is better able to adapt to the attacker’s set of transformations.

C UAP Search with Genetic Programming

As shown in Table 4, we also evaluate genetic programming
(GP) as a UAP search strategy. We observe that the UER
is strongly affected compared to the earlier approach. Since
GP gives more importance to chains, rather than focusing on
individual transformations, distinct UAPs can be found, but
GP tends to emphasize sequences that repeat transformations
leading to a higher rates of corruption and otherwise reduc-
ing the plausibility of the binary. Similar behavior has also
been reported using reinforcement learning for input-specific
evasion attacks where the agent tends to overuse actions and
generate repeated sequences of transformations [7, 49].

19

	1 Introduction
	2 Background
	2.1 Adversarial Evasion Attacks
	2.2 Universal Adversarial Perturbations
	2.3 Adversarial Training

	3 Feature-Space UAPs for Malware
	3.1 Input-specific vs UAP attacks
	3.2 Transferability of UAP attacks
	3.3 Discussion

	4 Problem-Space UAPs for Malware
	4.1 Methodology for Generating UAPs
	4.2 Android Malware UAP Attack
	4.2.1 Target Model Baseline
	4.2.2 UAP Search
	4.2.3 Results Analysis
	4.2.4 Limited Knowledge Variation

	4.3 Windows Malware UAP Attack
	4.3.1 Target Model Baseline
	4.3.2 UAP Search
	4.3.3 Results Analysis

	5 Evaluating Robustness to UAPs
	5.1 Adversarial Training with UAPs
	5.2 Hardening DREBIN against UAPs
	5.3 Hardening EMBER against UAPs

	6 Discussion
	7 Related Work
	8 Conclusion
	A Transferability Between DNN Models
	B Additional Android Result
	C UAP Search with Genetic Programming

