
Poster: Attacking Malware Classifiers by Crafting
Gradient-Attacks that Preserve Functionality

Raphael Labaca-Castro
Research Institute CODE

Bundeswehr University Munich
Munich, Germany

raphael.labaca@unibw.de

Battista Biggio
Dept. of Electrical and Electronic

Engineering
University of Cagliari

Cagliari, Italy
battista.biggio@unica.it

Gabi Dreo Rodosek
Research Institute CODE

Bundeswehr University Munich
Munich, Germany
gabi.dreo@unibw.de

ABSTRACT
Machine learning has proved to be a promising technology to deter-
mine whether a piece of software is malicious or benign. However,
the accuracy of this approach comes sometimes at the expense of its
robustness and probing these systems against adversarial examples
is not always a priority. In this work, we present a gradient-based
approach that can carefully generate valid executable malicious
files that are classified as benign by state-of-the-art detectors. Initial
results demonstrate that our approach is able to automatically find
optimal adversarial examples in a more efficient way, which can
provide a good support for building more robust models in the
future.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Soft-
ware reverse engineering; • Computing methodologies → Neu-
ral networks.

ACM Reference Format:
Raphael Labaca-Castro, Battista Biggio, and Gabi Dreo Rodosek. 2019. Poster:
Attacking Malware Classifiers by Crafting Gradient-Attacks that Preserve
Functionality. In 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’19), November 11–15, 2019, London, United Kingdom.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3319535.3363257

1 INTRODUCTION
Deep neural networks have been widely implemented for malware
classification [4, 7, 10]. Yet, problems still persist when they are
confronted to adversarial examples. These carefully crafted per-
turbations injected into malicious software can make the classifier
label malware as actual benign software.

Even though most of the literature has been focusing in the
image domain, adversarial learning for malware evasion is also a
promising area of research with recent contributions in the litera-
ture [1, 3]. Nevertheless, there are important differences between
these two domains, among others, the fact that datasets are more
accessible in the image domain (e.g.; MNIST, ImageNet) and the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6747-9/19/11.
https://doi.org/10.1145/3319535.3363257

nature of the input file. In the image domain files can be easily ma-
nipulated with perturbations that are often invisible to the human
eye without causing major issues to the structure of the files. On
the other hand, the malware domain is more complex to work with
when generating adversarial examples. The lower entropy of the
data, although encryption and compression often return higher
entropy scores, and the fact that many values can be binary instead
of continue real numbers, such as API calls, can affect the ability
to generate valid adversarial examples. The complexity can vary
greatly and depends on the structure of the input file. However,
evading the classifier is not only the important point since modi-
fying the structure of malicious files plays a big role. Hence, the
perturbations need to be carefully created in order to preserve the
functionality of each malware sample.

In this work, we present how to build evasive examples against
static state-of-the-art classifiers. We implemented a convolutional
neural network (CNN) to perform the malware classification [8].
The model was trained using the EMBER dataset, which consists of
2351 features representations of more than one million portable ex-
ecutable (PE) files. Among them 300.000 malicious, 300.000 benign,
300.000 unlabeled, and 200.000 test samples [2].

In order to generate the adversarial examples we implemented
an internal module, which is able to take a PE malicious file as input
and perform the injection of a sequence of perturbations in order to
achieve an evasive malware [6]. In this case, instead of relying on
finding the optimal random sequence of perturbations to achieve
misclassification, we analyze the value of the gradient for every
perturbation injected and use it to maximize the evasion rate of
the adversarial example generated. In this way, our approach is
able to conveniently identify which of the transformations return a
better score and, hence, generates faster adversarial examples for
any given malicious file provided as input.

Furthermore, we intend to analyze the cross-evasion results of
our optimal adversarial examples by testing them against state-
of-the-art classifiers of the literature [2]. This demonstrates how
successful it is to bring results from one classifier to another without
the need to create tailored adversarial examples for each classifier
targeted.

2 RELATEDWORK
Biggio et al. [3] proposed a simple and effective gradient approach
that is able to evade PDF file classifiers. Given that PDF files have
a flexible logical structure, they are a good option for adversaries
to use as infection vector by adding malicious routines. Several
approaches with different levels of knowledge were evaluated and

https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257


one of the takeaways is that the false negative rate increases the
more the PDF will be modified. Support Vector Machines (SVM) and
neural networks were evaluated but the approach can be applicable
to any other model with differentiable functions.

In [1] the authors proposed the use of a reinforcement learning
(RL) agent to find the best perturbations applied on PE files. It is
reported that approximately a fourth of the files achieved evasion.
In addition, retraining the malware detector using the adversarial
examples can reduce effectiveness of the attack by 33% according
to the authors. However, they acknowledge that these results can
depend on the model and dataset used. Furthermore, even though
the perturbations applied are meant to be preserving-functionality
transformations they do not provide an additional mechanism to
make sure the generated output files are valid.

In AIMED [5] we proposed the use of genetic programming (GP)
to find optimal sequences of perturbations that will be injected
into the malicious file in order to generate adversarial examples.
As an optimization strategy, GP seems to converge much faster
than classic stochastic approaches and the number of corrupt files
generated is drastically reduced. Furthermore, an extra control is
added in order to ensure the functionality of the evasive files that
were automatically created. However, this approach can lead to local
minima and maxima, which can prevent finding a suitable vector
of perturbation for some of the input samples. Another important
point is that unlike PDFs, byworkingwith PE files, the false negative
rate of the queried model does not seem to necessarily increase the
more perturbations the file receive. What in fact increases is the
likelihood of a corrupt file despite of its detection rate. Thus, even
working in the same domain, having different file structures, such
as PDF and PE, forces to further adjust the evasion strategy.

3 METHODOLOGY
CNNs are a particular type of feed-forward neural networks where
the pattern of connectivity used with its neurons resembles the
biological visual cortex. The architecture consist of three types
of layers: convolutional, pooling, and fully-connected. Unlike reg-
ular neural networks, convolutional networks do not have only
fully-connected layers. The convolutional layer will compute a dot
product between the weights and a part of the input. Then, the
information from the input will be passed along the pooling layer
where it will be downsampled and, finally, the fully-connected layer
will calculate the scores [9]. The CNN is trained on the EMBER
dataset using 1.1 million instances and 2351 features. There are
eight groups of them, which include parsed and agnostic-format
features. The former focuses on general and header information
of the file as well as imported and exported functions whereas the
latter refers to string information and byte-histograms [2]. The
performance of the malware classifier after being trained on the
dataset is displayed on Fig. 2 along with the train loss. We report the
results calculated for 40 epochs and used the area under the receiver
operating characteristic curve (ROC AUC) metric to measure the
rate of successful classification by the CNN as it makes easier for
further comparison with other models. The reported performance
consists of a f-score of 94% at 5% false positive and 7% false negative
rates. Additional tuning can still be performed to improve, mostly,
the true positive rates when comparing to the performance of the

Figure 1: Workflow to generate adversarial examples [6]

adversarial examples against further classifiers as well as to further
stabilize the loss function output.

3.1 Perturbation Injection
We implement, as depicted in Fig. 1, an internal module to generate
malicious adversarial samples that are able to evade the targeted
malware classifier [6]. During Step 1 a malware sample s is sent to
the manipulation box where a sequence of defined perturbations
will be injected. Once the process is done, it will generate a modified
sample s ′ and it proceeds to the next step to check whether the
file is still valid. In Step 2 a sandbox will be used to dynamically
test the file. In case s ′ is corrupt, the malware is dismissed and
the process is restarted. Otherwise, it triggers Step 3, where the
sample is checked for detection. Both s and s ′ are sent to Step 4 and
its detection results will be compared. Assuming the process was
successful, d(s ′) < d(s), an adversarial example is produced that
has a lower detection rate than the initial malware sample. This
workflow will be useful when generating the adversarial examples
needed to optimize the gradient-based attack.

3.2 Gradient-based Attack
Following the workflow in Fig. 1 we inject defined perturbations to
a previously detected malware in order to achieve misclassification
by the model. In this case, instead of attacking a black-box classifier
we will be targeting a CNN from which we have full knowledge
of its parameters and hyperparameters. That allows us to extract
the gradient information of every perturbation and calculate which
one of them maximizes the likelihood of evasion.

We characterize the notations as per [3] where a classification
model is defined as f : S 7−→ Y in the feature space s ∈ S. The
samples represented in the feature space are assigned to a label
y ∈ Y = 0, 1 where 0 denotes a benign and 1 a malicious PE file. A
continuous discriminant function д : S ∈ R is used to output the
labels. Therefore, we assume f (s) = 0 if д(s) < 0 and f (s) = 1 if



д(s) > 0. For any sample s , the strategy is to minimize д(·) or the
estimation of it д̂(·) in order to achieve an adversarial sample s ′
based on the following expression:

e = argmin
s

д̂(·) s .t . d(s, s ′) ≤ dmax (1)

We selected gradient descent as the technique to approach this
problem. Despite of its good performance, it is also known that
optimizing locally can be prone to failure due to the nature of the
discriminant function. However, given our rather large training
dataset we expect to avoid such issues. All the attacks performed
have the dmax constraint as the transformations created must al-
ways respect the maximum distance: d : S×S 7−→ R+. The correct
distance requires domain knowledge and, in the PE domain, needs
to properly reflect the limitations of the perturbations.

4 SOLUTION
We propose a solution based on generating valid PE files that are
able to evade malware classification (Fig. 2). Windows portable
executables are widely used by adversaries in order to perpetrate at-
tacks and are therefore one of the most important infection vectors.
Nevertheless, manipulating them with actions such as removing
objects can quickly lead to corrupt files. Thus, we implement per-
turbations only as additions or modifications to the PE.

The algorithm returns a score for each of the perturbations and
calculate the value of the gradient for the next iteration. This ap-
proach leads us to calculate in a much more efficient way the best
evasive sequence vector of perturbations that needs to be injected
into a PE file in order to achieve an evasion. An important aspect
is that the functionality can be preserved after the process and the
system only outputs valid modified versions of the input malware.

Until now, most of the approaches mentioned worked with black-
box classifiers, which brings us a realistic scenario from an adver-
sary perspective but it prevents us to understand how the classifier
responds specifically to each of the transformations. Conversely,
attacks on white-box models do not normally produce real files.
Therefore, our approach can be useful to not only achieve better
and faster adversarial examples but also to further understand the
weaknesses of the model in order to build more robust classifiers
for malware detection. Furthermore, the valid PE files generated
can be used for additional purposes. First, for retraining the model
in order to determine what is the ratio of improvement when the
classifier is able to learn from the adversarial examples generated
to evade it. Second, to evaluate cross-evasion capabilities of the
adversarial examples.

5 CONCLUSION
In this work, we proposed the ability of generating valid adver-
sarial malware examples against convolutional neural networks
using gradient information. By implementing attacks on the EM-
BER dataset, we determined that using the gradient to find optimal
evasions is a promising strategy to improve adversarial attacks on
real malware. Our initial experiments showed that we are able to
use that information to find optimal sequences of transformations
without rendering the malware sample corrupt.

As future work, we aim to improve the efficiency of the system by
using another neural network to estimate the distribution instead

Figure 2: ROC AUC & training loss reported by classifier

of extracting the features and calculating the gradient for each
malware sample.

6 ACKNOWLEDGMENTS
The authors would like to thank the Chair for Communication
Systems and Network Security as well as the Research Institute
CODE for their comments and improvements. Research supported,
in parts, by EU H2020 Project CONCORDIA GA 830927.

REFERENCES
[1] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth.

2018. Learning to Evade Static PE Machine Learning Malware Models via Re-
inforcement Learning. CoRR abs/1801.08917 (2018). arXiv:1801.08917 http:
//arxiv.org/abs/1801.08917

[2] Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Train-
ing Static PE Malware Machine Learning Models. CoRR abs/1804.04637 (2018).
arXiv:1804.04637 http://arxiv.org/abs/1804.04637

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European conference on machine learning
and knowledge discovery in databases. Springer, Heidelberg, Germany, 387–402.

[4] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. 2016.
Deep learning for classification of malware system call sequences. In Australasian
Conference on Artificial Intelligence. Springer, Heidelberg, Germany, 137–149.

[5] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo Rodosek. 2019. AIMED:
Evolving Malware with Genetic Programming to Evade Detection. In 2019 18th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, New York, NY, USA, 1–x, Paper presented on
Aug 5, 2019.

[6] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo Rodosek. 2019. ARMED:
How Automatic Malware Modifications Can Evade Static Detection?. In 5th
International Conference on Information Management (ICIM). IEEE, New York, NY,
USA, 20–27.

[7] Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil
Thomas. 2015. Malware classification with recurrent networks. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
New York, NY, USA, 1916–1920.

[8] Subhojeet Pramanik. 2018. Malware detection using Convolutional Neural Net-
works. https://github.com/subho406/Malware-detection-using-Convolutional-
Neural-Networks.

[9] Shun Tobiyama, Yukiko Yamaguchi, Hajime Shimada, Tomonori Ikuse, and
Takeshi Yagi. 2016. Malware detection with deep neural network using pro-
cess behavior. In 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), Vol. 2. IEEE, New York, NY, USA, 577–582.

[10] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017. Mal-
ware traffic classification using convolutional neural network for representation
learning. In 2017 International Conference on Information Networking (ICOIN).
IEEE, New York, NY, USA, 712–717.

http://arxiv.org/abs/1801.08917
http://arxiv.org/abs/1801.08917
http://arxiv.org/abs/1801.08917
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
https://github.com/subho406/Malware-detection-using-Convolutional-Neural-Networks
https://github.com/subho406/Malware-detection-using-Convolutional-Neural-Networks

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Perturbation Injection
	3.2 Gradient-based Attack

	4 Solution
	5 Conclusion
	6 Acknowledgments
	References

