
OpenMTD: A Framework for Efficient
Network-Level MTD Evaluation

Richard Poschinger∗
richard@poschinger.net

Ludwig-Maximilians-Universität München

Nils Rodday
Research Institute CODE

Universität der Bundeswehr München

Raphael Labaca-Castro
Research Institute CODE

Universität der Bundeswehr München

Gabi Dreo Rodosek
Research Institute CODE

Universität der Bundeswehr München

ABSTRACT
Moving Target Defense (MTD) represents a way of defending net-
worked systems on different levels. It mainly focuses on shifting
the different surfaces of the protected environment. Existing ap-
proaches studied on network-level are Port Hopping (PH), which
shifts ports, and Network Address Shuffling (NAS), which steadily
alters the network addresses of hosts. As a result, the formerly static
attack surface now behaves dynamically whilst the relationship of
ports to services and network addresses to hosts can be changed.
Most MTD approaches have only been evaluated theoretically and
comparisons are still lacking. Hence, based on existing results, it
is not possible to contrast implementations like PH and NAS in
terms of security and network performance. Finally, implemen-
tation details are usually not shared publicly. To mitigate these
shortcomings, we developed a hybrid platform that evaluates such
techniques and reimplemented PH and NAS with additional fea-
tures such as connection tracker with fingerprinting service and a
honeypot module, which is helpful to bypass attackers attempts. We
created a common software platform to integrate approaches using
the same gateway components and providing graphic network us-
ability. The environment, named OpenMTD, has been open-sourced
and works in a modular fashion allowing for easy extensions and
future developments. We show that common attacks, starting with
a reconnaissance phase were not able to successfully reach vulnera-
ble hosts that are part of the OpenMTD-protected network. A new
worm has been developed to spread across the network and the
propagation paths showed that OpenMTD can lay the ground for
extending protection mechanisms against self-propagating threats.

CCS CONCEPTS
• Networks → Network security; • Security and privacy →
Network security.

∗Work was done during a research visit at the Research Institute CODE.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MTD’20, November 9, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8085-0/20/11. . . $15.00
https://doi.org/10.1145/3411496.3421223

KEYWORDS
openmtd, moving target defense, network security, port hopping,
network address shuffling

ACM Reference Format:
Richard Poschinger, Nils Rodday, Raphael Labaca-Castro, and Gabi Dreo
Rodosek. 2020. OpenMTD: A Framework for Efficient Network-Level MTD
Evaluation. In 7th ACM Workshop on Moving Target Defense (MTD’20), No-
vember 9, 2020, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3411496.3421223

1 INTRODUCTION
With the number of cyber attacks increasing dramatically over the
past years, static defense mechanisms are not sufficient anymore
to protect networks in an adequate way. Instead, more agile and
dynamic network security approaches need to be evaluated and de-
ployed. MTD satisfies those requirements by continuously shifting
the attack surface, making previously static parameters appear to be
dynamic. Well-known approaches are Network Address Shuffling
(NAS) and Port Hopping (PH). While the former keeps shuffling
Internet Protocol (IP)-addresses, the latter alters the ports used
for active transmissions. Implementations can be complex and net-
work operators are hesistant towards the introduction of moving
parameters into their networks, as debugging and troubleshooting
becomes cumbersome. Hence, MTD approaches should be carefully
designed and evaluated against each other. However, almost every
previous publication relied on a different evaluation environment,
specifically tailored towards the evaluation of a single proposal and
not accessible to fellow researcher, leaving little room for objec-
tive comparison and evaluation within the same set of parameters.
Therefore, we identified the need of the MTD research commu-
nity for a common framework to perform comparisons of different
proposals. This paper presents OpenMTD, a modular environment
designed to evaluate MTD methods, based on the well-known net-
work simulation tool GNS3 [11]. It is easily deployed and ready
to reproduce existing methods, while flexible enough to quickly
incorporate new concepts. We use our newly proposed framework
to evaluate two major concepts, PH and NAS in order to provide
a starting point. Moreover, we developed several extensions, suit-
able for both approaches, including a connection tracking module
and a honey pot module to satisfy requirements of modern net-
works. Since artifacts of previously published concepts are not
publicly available, we contribute to the current state-of-the-art by
also fully releasing our implementations of the aforementioned
MTD approaches.

https://doi.org/10.1145/3411496.3421223
https://doi.org/10.1145/3411496.3421223

A cyber-attack usually starts with the identification of targets,
also known as reconnaissance [19]. In a static network, an attacker
has nearly unlimited time to discover services and vulnerabilities.
Once identified, the attacker is able to use that knowledge almost
indefinitely as components of networks are not changing frequently.
We show that NAS and PH significantly reduce the exposure of
internal systems towards external threats, making it much harder
for an adversary to find vulnerable targets within the protected
infrastructure. Even if such targets are identified, the resulting
knowledge is only exploitable for a very short period of time as the
MTD-protected network would continue to change its parameters.
Our newly developed NAS connection tracking module allows
for continuous connections although subnets and addresses are
being exchanged. External clients receive a different virtual IP and
port to interact with the same service, while old connections are
maintained to retain a high level of service quality.

We evaluate the security of each approach by performing several
networks scans from an attacker’s perspective using different NAS
and PH parameters and measuring the obtained insider knowledge.
Since most attack mechanisms are based on scanning tools, e.g.
NMap [21], they rely on the assumption that networks are static.
We additionally wrote our own attack script that would adapt to
quickly changing networks, as a sophisticated state-sponsored ad-
versary might be able to, and constructed a worm based on these
observations that would infect vulnerable systems and quickly
spread throughout a network. We measure the number of infected
hosts for each experiment run to make judgments about the security
level of evaluated approaches.

In summary, this work presents the following contributions:
(i) Development of OpenMTD, a modular MTD evaluation platform
that allows for ease of reproducibility and consists of a virtual-
ized testbed and a software framework; (ii) implementation of PH
and NAS in a hybrid approach that leaves it up to the operator’s
discretion which features to use; and (iii) further development of
additional modules, e.g. connection tracking and honeypots, to
extend current approaches. All of those parts have been made pub-
licly accessible. Moreover, (iv) we evaluate PH, NAS, and our hybrid
approach within OpenMTD against each other and lastly (v) the
development of a proof-of-concept worm, which performs very
aggressive scanning and immediate exploitation afterwards to pen-
etrate the additional layers of defense.

The remainder of this paper is organized as follows: in Section 2,
we provide the background and a literature review necessary to
introduce the environment and the hybrid approach in Section 3.
Section 4 is the evaluation of approaches in terms of performance
and security using the metrics defined in the previous section. Sec-
tion 5 concludes the work.

2 RELATEDWORK
In order to perform evaluations with our OpenMTD environment,
we are going to, first, develop and implement network-level MTD
approaches based on the literature while extending some of the
capabilities of the proposed techniques. In general, two MTD ap-
proaches, Network Address Shuffling and Port Hopping, have been
most prominent in this area of research during the past years. We

Switch Internet
MT-Gateway

MT-Gateway

Gateway
Router

Internet

Switch

DB Server
(Non-MT Host)

Auth DNS
(non-MT Host)

Web Server
(MT Host)

MT Host

Non-MT Host

External
Host

MT-Gateway

MT-Controller

Figure 1: Random Host Mutation, cf. [1]

are going to provide an overview over these two, including addi-
tional variants proposed in the literature.

Network Address Shuffling. IP addresses are used for the identi-
fication of sender and destination within the Internet. The Internet
Protocol relies on lower layers to provide switching capabilities,
and subnetting, a way to divide the address space into smaller
portions. This is helpful for several technical and administrative
reasons [23, 31]. As subnets provide smaller address ranges com-
pared to the overall available space by definition, they can more
easily be scanned for active hosts. NAS provides a means to dynam-
ically alter network addresses. It changes the mapping between
address and host, which historically remains static. Addressing in-
formation invalidates over time as addresses keep changing. Once
acquired insider knowledge can therefore only be used during a
short amount of time. Server systems can use a real IP (rIP) which
is changed by the NAS system or use an additional virtual IP (vIP).
The usage of a vIP results in a constant rIP.

Jafarian et al. [14] introduced the Open Flow Random Host Mu-
tation (OF-RHM). It is based on the OpenFlow protocol and requires
Software Defined Networking (SDN). One address range is assigned
per host. The vIP is chosen from the assigned address ranges with
uniform probability associated with each vIP. The system uses
different components for the address translations (Moving Tar-
get Gateway (MT-Gateway)) and the coordination of the mutation
(Moving Target Controller (MT-Controller)). The controller defines
new sets of vIPs, coordinates the OpenFlow switches and handles
Domain Name Service (DNS) updates.

Al-Shaer et al. [1] propose RHM, which is a modified version of
OF-RHM and does not require SDN. It also uses vIPs as well, which
get assigned in a two-phase allocation mechanism. Figure 1 shows
the structure of a RHM network. A MT-Controller assigns a subnet
to a host during Low Frequency Mutation (LFM) and sends this
information to the gateway, which is responsible for the vIP → rIP
translation of the host. The MT-Gateway chooses an IP address of
the given subnet to the protected host if High Frequency Mutation
(HFM) is triggered. They also translate DNS responses and replace
the rIP with the vIP.

Antonatos et al. [2] propose Network Address Space Randomiza-
tion (NASR), which changes the rIP while the host is inactive. This
is done using the Dynamic Host Configuration Protocol (DHCP).
The implementation has to be altered to enable it to keep track of

TCP connections and avoid address changes while connections are
still active. The second new module, which has been added to the
DHCP server is called Service Fingerprinting. It keeps track of every
connection and decides whether a connection failure is tolerable.
If it is tolerable, the DHCP server will change the address even if
alive connections exist. The client can reestablish the connection
via DNS address resolution. Simulations have been used to test the
worm propagation in an NASR-protected network.

Jafar et al. [15] proposed a “Spatio-temporal Address Mutation”
approach which also uses DNS requests. Only authorised adminis-
trators are allowed to reach hosts by the real address. These tem-
poral addresses (ephemeral IPs) are generated using the source
(requestor) identity and the time. The rIP remains unchanged. The
mutation can be executed using two strategies. The random muta-
tion strategies chooses an address from the unused address space
randomly. If an attacker tries to probe the network, the deceptive
mutation will be activated. This strategy tries to redirect new probes
from the attacker to an already visited host.

Fraunholz et al. [8] proposed an approach to increase the com-
plexity of reconnaissance and prevent fingerprinting methods. A
hash-based address mutation technique is combined with different
stack randomization mechanisms, e.g. TCP values can be tampered.
To prevent device identification, the approach is able to randomize
the originally hardware-bound MAC-Address Additionally, decoy
systems are part of the network and are deployed to unused adresses
based on automatic network cluster analyses. The approach has
been implemented in Python using new kernel modules.

Port Hopping. Another significant approach is PH, which is based
on the alternation of ports used by the transport layer protocols
User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP). Both protocols use ports to identify the processes that han-
dle outgoing or incoming data. For TCP connections source and
destination ports are required to identify an individual connection.
UDP has a header field for both ports as well, but, by default only
requires a destination port, as it is a connection-less protocol, which
does not support many features of connection-oriented protocols.
The ports are represented by two octets in the headers of both
protocols [25, 26].

Yue-Bin et al. [20] elaborate in their work on modeling the effec-
tiveness of port hopping approaches: To obfuscate the Well-Known
(1-1023) or Registered Ports (1024-49151) which are normally used
by server systems to provide services, always reachable under the
same destination port, PH constantly maps the selected ports of the
services to generated ports. The generated ports are chosen from a
port pool that is available to the administrator. The resulting gen-
erated port is also called vPort. The original service port is called
rPort and is blocked once PH is active. Most of the approaches use
a function to generate the vPort based on the rPort and vice versa.
This function can additionally rely on a pre-shared key. They show
that PH can limit the likelihood of an successful attack.

Badishi et al. [3] developed a DoS-resistant protocol. It is sim-
ilar to its connection-less UDP and IP relatives and makes use of
a pre-shared key. The proposed method relies on acknowledge-
ments, which eliminates the problem of synchronisation. They use
a pseudo-random function to generate the next port during a PH

sequence. A counter is used to determine which port should be
open or used as the destination port. A simulator for this approach
has been developed by Hari et al [12]. They were able to prove
that the success rate was still more than 90% during an attack with
about 10.000 packets.

Lee et al. [18] use a time slot dependent function, which also uses
a pre-shared Key. Packets with invalid port numbers will be filtered
out. Overlapping time slots solve the problem of time synchroniza-
tion errors and transmission delays. Symmetric key mechanisms or
public key mechanisms can be used as key management solutions.
The approach is incompatible with UDP, but it can be adapted for
TCP with limitations. These limitations exist due to the initial port
resolution at the beginning of a connection.

Hybrid approaches.
Dunlop et al. [7] developed Moving Target IPv6 Defense (MT6D),

which uses a rotation of source and destination address and the
transport layer address (Port). It focuses on version 6 of the Internet
Protocol. The next interface identifier of the address is generated
based on a hash of the current identifier, a shared key and the
current timestamp. Two addresses are used concurrently to prevent
interruptions of the connection. The host can define a specified
port range for PH or use the unused bits of the hash to calculate a
vPort. Tunnelling can be implemented and encrypted.

Kewley et al. [17] use pre-shared keys for Dynamic Network
Address Translation (DYNAT). It requires a priori knowledge about
the shuffling algorithm and the pre-shared key. The vPort and vIP
are generated based on the rPort, the rIP, and the key. Similar
to other approaches, changes are required on client and server-
side. It is therefore separated from the host and transport protocol
independent.

Finally, there are also modular approaches, which do not directly
fit into the defined categories but are worth to be mentioned. Fraun-
holz et al. [9] also developed Cloxy, which is a modular Context-
aware Deception-as-a-Service Reverse Proxy for Web Services. It
is able to perform MTD on web application parameters. It can be
adapted to the use case of different applications. Examples that are
part of the prototypic implementation are version trickery, injection
prevention, or cookie scrambling. The security of the implementa-
tion of the proxy has been proven and is able to deploy deceptive
elements.

Furthermore, Connell et al. [5] presented a framework for the
qualification of MTD techniques. Hence it is possible to determine
the effectiveness of the techniques based on the probability of the
attackers’ success. The framework focuses on the reconnaissance
phase. It is separated into four different layers which address the
protected services, their weaknesses, the required knowledge and
the MTD techniques. These layers are formally defined in a mathe-
matical model which results in a probabilistic computation from
the MTD to the service layer.

3 OPENMTD
Utilizing the insights from pevious work, we next elaborate on how
we designed OpenMTD. We supply the image of the virtualized
testbed to be readily deployed and the software platform for fellow
researchers [29]. First we introduce our requirements, then explain

MTD
Protected
Network

Authorised
Clients

Unauthorised
Attackers

Authorised Connection

Attack / Reconnaissance
Vector

Ex
pl

or
at

io
n

Su
rfa

ce

Figure 2: Evaluation of the MTD Approaches

our MTD modules, show our test environment and finally present
our software platform.
Requirements. Due to the high number of different approaches,
which show considerable differences in their focus and technical
background, it is necessary to definemetrics to select or combine ap-
proaches for the evaluation. We define the following requirements:
Ease of implementation in production networks; Not dependent on
SDN technology.

The first requirement is that the selected approach can be imple-
mented in a production network without or with as few changes
to the system components as possible. Above all, no elementary
changes to the specification of fundamental network components or
standards should be necessary. Thus all approaches, which included
changes to protocols of the internet and transport layer have been
excluded from further selection processes. To keep the number of
changes in a production network as low as possible, the solution
should not require additional software or hardware components for
every involved client or server. Additionally, the used technologies
should, as far as possible, preserve or use the existing infrastructure
to make the transformation of a non-MTD-protected network to an
MTD-protected network as simple as possible. The MTD approach
should not interrupt existing administration techniques and com-
munication. To make the selected approach even more flexible, IPv4
and IPv6 should be supported.

Second, to be able to use or evaluate the approaches in existing
networks, the usage of SDN should not be a requirement or fun-
damental part of the selected solution. Currently, the SDN market
is growing rapidly, but still, about 77 % of the data centres are not
using SDN or Network Function Virtualization (NFV)[4]. There-
fore, we do not want to exclude traditional networks and care for
compatibility.

The evaluation measures authorized connections to the pro-
tected sector or use unauthorized attack or reconnaissance vectors
as shown in Figure 2. Thus, the main focus of all approaches is the
behaviour on the attack surface. Internal mechanisms, like adminis-
trator access mechanisms, which are required for the administration
of the networks are not to be prioritized if they have no practical
impact on the security or performance. Based on this specification,
the selected approaches can also be adapted and reduced to their
required features.
Network Address Shuffling Module. Network Address Space
Randomization and Random Host Mutation are approaches based
on NAS that are worth considering. In both approaches DNS is used
to receive the address of the server. NASR uses DHCP to change the
rIP of the server periodically. This might be a simple solution for

Server
Client

rPort rPort
Internet

vPortvPort

Figure 3: Modified Version of DYNAT

the generation of new addresses, but it makes the internal adminis-
tration much harder. On the other hand, RHM solves this problem
and uses vIP to address the server publicly. Therefore, gateways
are required to perform the address translation. This can result in
additional implementation and configuration effort. Nevertheless,
RHM uses it as an advantage. Instead of the distribution of just one
defined subnet via DHCP, RHM can shuffle in much larger address
spaces. Several subnets or one large subnet can be combined and
used across the infrastructure. Thus the predictability of addresses
is much lower, as it would be, if the attacker could gain knowledge
about which part of a network or which data centre is using which
subnet.

Nevertheless, some advantages of NASR will still be useful, for
instance the service fingerprinting approach as it can determine
when a connection should be interrupted by a shuffling process.
Therefore, the admin is required to get information about the stabil-
ity of the network protocols. RHM uses connection tracking instead.
Connection tracking can allow existing connections to continue
even if the vIP the connection is using has changed. The technique
has been integrated in the MT-Controller to support connection
continuation after LFM has been triggered. Fingerprinting has been
integrated using the connection tracking module and can be used
concurrently for different protocols.

In the RHM environment, attackers can directly determine if the
destination address is currently valid and start additional recon-
naissance activities or the attack. Furthermore, it is not possible to
gather more information about the activities of an attacker besides
the log data containing refused packets. [35] solves these prob-
lems using honeypots, which are part of the MT-network. Every
packet that contains an invalid destination address is automatically
forwarded to the honeypot. Thus, honeypot support has been in-
tegrated in the NAS module of MT-Gateway and MT-Controller
[1, 2]. In summary, the following improvement are part of the NAS
module: Combined connection tracking with service finterprinting,
Connection continuation support in the MT-Controller, Honeypot
support in MT-Controller and MT-Gateway.
Port HoppingModule. As no approach suffices the requirements,
DYNAT was most fitting. It is per nature a hybrid approach com-
prising PH and NAS, whereas only the PH module will be used.
The infrastructure consists of a client and a server gateway, which
can be separated from the host. In the original proposal, the DY-
NAT client gateway is a software on the client host. It could also
technically be used in a separate component, e.g. another gateway,
as shown in Figure 3. Thus, as requested in the requirements, no
client or server modifications are necessary to implement this ap-
proach but the approach has to be slightly adapted as only PH
functionalities can be used.

The DYNAT approach translates parameters in the TCP and the
IP headers. Both gateways require an initial secret value. A crypto-
graphic algorithm performs the address translation (vPort→ rPort,

Server

Protected

PublicClient

Server

DNS-Server

MTC

MT-
Gateway

MT-
Gateway

MT-
Router

Attacker

MT-
Port-Gateway

Client

Figure 4: Testbed Topology

vIP→ rIP and vise versa). The gateway recalculates the checksums
afterwards. A time-based mechanism changes the secret periodi-
cally. Hence the results of port scans cannot be used continuously.
The DYNAT gateways are synchronised by wall-clock time.

Figure 3 shows the modified version of the DYNAT approach.
Both gateways have been arranged symmetrically. The gateways
mark the borders between virtual and real ports. The internet could
be replaced with any network that is accessible for a potential
attacker. It could also be a part of a company network, which can
be reached by employees with a lower security classifications or
lower group membership rights [17, 20]. It was possible to speed up
the PH module, by integrating a cache for the secure hashes. Thus,
the hashes don’t need to be recomputed laboriously for the same
tuple of the time interval, the source rIP and the pre-shared key. In
summary, the following improvement are part of the PH module:
Hash-cache for higher performance and client gateway separated
from the host.
Environment. A simplified version of our test network, represent-
ing the general platform in which previously introduced modules
can be enabled or disabled, is depicted in Figure 4. The green box
marks the protected area. These hosts can only be reached using
virtual addresses or ports. The DNS-Server is excluded from the pro-
tected network, as it needs to be addressed statically. Therefore, the
gateway needs to support both, static addresses and address trans-
lation for protected hosts. The MT-Gateway connects the protected
networks to the rest of the network. The Moving Target Router
(MT-Router) not only performs static routing to the gateways, it
also has to provide the dynamic virtual routes. The MT-Controller
is part of the server network as well and can directly communicate
with the MT-Router and the MT-Gateways. The router in the middle
only provides static routing functionality and marks the border to
the public network. Attackers can be simulated, and security tests
can be launched from hosts in the public part of the network. The
blue client-side contains hosts, which can communicate via a secure
port hopping protected channel. An additional gateway is part of
the client network, to perform the port translation between client
and server networks. Even if it contains the same implementation

of the gateway software, port hopping functionality has to be ac-
tivated. To distinguish it from other gateways it is called Moving
Target Port Gateway (MT-Port-Gateway).

The environment needs to support all aspects of the required
tests, including the required protocols and needs to show realistic
networking behavior. Furthermore, it has to support all required
protocols and needs to show realistic networking behavior. This
is not only required for performance tests, it would also impact
security analyses, as they rely on different protocols. To perform
security tests, it must be possible to use real network security or pen-
etration testing tools in the network. Hence network simulations
like OMNET++ or ns-3 cannot be taken into account. A virtualised
environment has been preferred over a hardware implementation
to limit the financial and administration effort. Frameworks like
ns-3 and Mininet fell prey to our previously mentioned exclusion of
SDN technology. GNS3 is highly flexible and can perform most of
the networking tasks [24]. It supports different types of virtualized
devices and can be easily administrated using a GUI. The GUI can
be installed remote from the actual environment, which can run
on another computational platform and thus can use e.g. cloud
computing resources.

In order to obtain a running setup, a fellow researcher would
have to follow these simple steps, which are more closely described
in the HowTo provided with the image: (i) Download the VM im-
age (server) (ii) download and install the GUI software (client) (iii)
adapt network adapter configuration of VM (iv) setup deployment
configuration (client-server connection).

The test environment contains three host groups, each contain-
ing 10 hosts, which have been used for worm propagation tests.
Two server-side and one client-side gateway perform MTD, are
controlled by an MTC and can forward traffic to two honeypot
servers. A DNS server has the features required to resolve domain
names. Many other hosts provide resources for performance and
security testing. Configurations are distributed via a deployment
network.
Software. The MT-Gateway provides translation capabilities for
both NAS and PH and has been implemented in Python. A modular
architecture has been created which is able to configure and set
up all modules that are responsible for packet manipulation. It
provides the technical capabilities to receive packets, alter them, and
reinject it into the network stack using fnfqueue (a faster version of
NetfilterQueue) [33]. Each module can subscribe to the information
of certain protocols. Among a few other Python libraries Scapy
is used to perform packet analysis and manipulation. It supports
both IPv4 and IPv6. The platform can maintain a certain procedure
to ensure compatability between different modules and support
performance optimizations like the parallel execution of connection
tracking modules. As the MT-Controller has to control the MT-
Gateways and does not share any address translation and packet
manipulation functionality, it has been implemented separately.

New modules can easily be added by following these steps (again
described more closely in the HowTo shipped with the VM): (i) Cre-
ate a new class (tracker or manipulating), (ii) define the necessary
protocols, (iii) add the new module to the packet manipulation
sequence, (iv) add to the setting file.

1 2 3
0

500

1,000

Test number [#]

Ba
nd

w
id
th

[k
iB
/s
]

NAS NAS and PH
PH Software Benchmark

Figure 5: NAS and PH - Curl Download Results

4 EVALUATION
The evaluation focuses on security and performance aspects of the
studied approaches. Specifically, security evaluates the reconnais-
sance surface and the consequences of its behaviour while perfor-
mance measures basic key figures and the behaviour of high-level
technologies and protocols.

4.1 Performance
The performance of the network can be measured in different ways.
Based on the categories of Lee et. al. [16] the following metrics
have been selected:

(1) Transmission speed (Utilization),
(2) Latency (Delay),
(3) Loss and Availability

Transmission speed. The speed is measured from the authorized
client network towards the server network. In this case, TCP-based
methods are employed to evaluate the speed of data transmission,
since only TCP connections continue to work after the shuffling
process. Curl [6] has been used to evaluate the performance of
downloads via HTTP from an Apache webserver. Experiments
are launched separately to trigger DNS resolution. Otherwise, it
could exceed the LFM sliding window of NAS. On the webserver, a
50 MB file testfile has been created, which is then transferred for
measurement purposes. The default configuration is the following:
For NAS, 30 seconds HFM and 120 seconds LFM cycles are set with
connection tracking (continue all mode) and the slidingwindow size
is two LFM cycles.Whereas for PH, the hopping period is 20 seconds.
Finally, DNS TTL has been set to three seconds. The experiments are
performed usingNAS and PH separately and results are combined in
the end. The performance with (platform benchmark) and without
(network benchmark) the software platform have been measured
during the benchmark tests. As shown in Figure 5, if the PH module
is used, the speed decreases to around 800 kiB/s. Compared to NAS
the PH module is much more efficient whereas the combination of
NAS and PH together performs similar to using NAS alone.

In addition to HTTP, pure TCP connection bandwidth experi-
ments have also been conducted. For instance, Qperf can measure
bandwidth and latency between two hosts using different protocols
like TCP, UDP and RDMA. Also, the TCP one-way bandwidth test

1 2 3
0

500

1,000

Test number [#]

Ba
nd

w
ith

[K
B/
s]

(a) NAS and PH - QPerf Bandwith Results

1 2 3
2.8

3

3.2

3.4

3.6

Test number [#]
La
te
nc
y
[m

s]
NAS NAS and PH
PH Software Benchmark

(b) NAS and PH - QPerf Latency Results

Figure 6: NAS and PH - QPerf Test Results

is used, which lasts 120 seconds and the configuration of the MT-
Gateways is not changed. [10] Figure 6a points out that achieved
bandwidth is lower compared to Curl. Yet, they show the same
relative correlation between the different MTD modules and the
benchmark. This time, the combination of NAS and PH is clearly
less efficient than the usage of NAS alone.
Latency. Qperf has also been used to examine the latency of the
connection to the host, which refers to the time a packet needs to
be transferred across the network. It has no impact on the network
throughput of UDP, but it affects TCP connections. A higher latency
influences the congestion control of TCP negatively. The delay of
acknowledgements will slow down the increase of the congestion
control windows [30].

The results of Figure 6b show that the NAS has lower latency
times than PH. Additionally, the results indicate that the negative
impact on the TCP congestion control is limited. The high PH la-
tency could be a result of the high computational effort of the initial
secure hash calculation. Based on the results, the latency of PH
seems to be rising with each test run. However, we conducted addi-
tional experiment which did not confirm this trend. It is therefore
judged as an artifact.

For NAS, domain resolution is performed before the connec-
tion starts. Thus, the latency is important to the whole connection
performance until the DNS resource record arrives. Therefore, ex-
periments are performed to measure the latency of DNS resolution.

0 100 200 300 400 500 600
0

50

100

150

200

Time [s]

Pa
ck
et
s[
#]

Packets Packets with RST-Flag

Figure 7: NAS -Wireshark HTTP Test Analysis (All Packets)

Dig has been used for this, a tool capable of performing domain res-
olution [13]. Our results, that we omitted in more detail for brevity,
show that the latency for DNS resolution has at least doubled.
Loss and Availability. Given that both approaches, NAS and
PH, change identifiers periodically this behaviour may result in
instabilities when a connection is established. Furthermore, NAS
and PH have different weaknesses in this regard and need to be
evaluated separately with different setups.

For NAS the implemented approach combines different tech-
niques, which can keep connections alive. The MT-Controller keeps
old subnets configured at the router and the MT-Gateways can al-
low old connections to continue by performing address translations
for outdated vIP → rIP mappings. Additionally, the connections
can be analysed and the shuffling process can be postponed. For
this reason no packet loss or connection interrupts were measured
during several experiments when these techniques were activated.

To evaluate NAS in the network ApacheBench is used, which is
a benchmark for Apache servers and can show how many requests
it is able to serve [32]. In this case, 1000 requests are launched
in 100 concurrent threats, which take on average 18 seconds to
run. During multiple test runs, all requests have been successfully
completed.

The NAS LFM procedure consists of several processes running
on different hosts. This may lead to a temporary inconsistency of
different vIP and mapping configurations, which can affect connec-
tion attempts. For instance, the MT-Gateway responsible for the
DNS server can return outdated vIPs, while they are not reachable
anymore via the MT-Gateway of the host subnet. Additionally, the
timespan between DNS response and connection attempt can also
result in a connection to an outdated vIP.

To evaluate the impact of this behaviour, a longer experiment
was performed with connection attempts. Every 0.2 seconds, a
new request to a website is launched. The results are evaluated
using Wireshark as observed in Figure 7. For the HTTP requests,
Curl is used like in the previous section. During the examination,
21 different IPv4 and 33 IPv6 endpoints have been recorded. In
total about 12000 HTTP packets have been sent and the server
never returned an HTTP error code. Thus, it was able to handle all
requests successfully. Figure 7 depicts the number of packets sent
during the test. The blue line shows all the HTTP packets whilst
the red the number of TCP resets due to connection errors. As the
LFM shuffling process is started every 120 seconds, the number

2 3 4 5

2 3 4 51

X

3

X X X

t

Client
Gateway

Server
Gateway

Figure 8: PH - Time Interval

of resets increases in these range. This returns short transmission
peaks, which are probably caused by retransmitted packets. As only
one host is performing the HTTP requests, it needs to perform the
DNS resolution after the resource record has been deleted from the
cache which can be attributed to the DNS time-to-live value. This
behaviour can be observed, as the blue line shows little drops if the
client has a valid DNS entry.

The PH approach is limited to only two modules on two hosts,
which need to interact. No synchronisation is required between
both gateways, as they are able to compute the port translation
independently. The port translation is based on the current time and
does not provide any time synchronisation functionalities. Hence,
both hosts use their local timestamp that has been received using
the Network Time Protocol (NTP). As the local time can vary, a
difference between both PH gateways can occur. Figure 8 shows
how deviations of the time synchronisation can result in timespans
with an invalid state. Every coloured box represents a time interval
that has been calculated by the local timestamp of the client and the
server gateway. In this example, as timestamps constantly vary, both
gateways cannot establish a valid communication between time
intervals. These invalid timespans are visualised by white boxes
between both gateway intervals. Moreover, a valid port translation
can only be calculated two-thirds of the time.

The resulting behaviour can be seen in Figure 10 where both
gateways are currently in inconsistent states. They use different
timespans due to asynchronous timestamps. The client wants to
send a packet to the port 80 of the server. The destination port
gets translated at the first gateway using the time-interval 8. The
second gateway tries to recalculate the rPort but uses a different

0 20 40 60 80 100 120
0

200

400

600

800

Time [s]

Pa
ck
et
s[
#]

Packets Packets with RST-Flag

Figure 9: PH - Time Inaccuracy Bandwidth Test (Randomiza-
tion Values = 300 ms)

Moving Target
Port

Gateway

Moving Target
Gateway

Interval:
8

dst	port: 80

Interval:
9

dst	port: 5382

dst	port: 6312

Figure 10: PH - Failed Packet Transmission

time-interval. Thus, instead of the original destination rPort 80, an
invalid rPort is calculated, and the packet will not be successfully
delivered. This effect can also occur due to the latency between
both gateways.

To examine the impact of this behaviour, the port hopping modul
has been adjusted. We randomly add or subtract time variance to
the timestamp. The maximum positive and negative deviation is
called randomization value. As both gateways use this adjusted
module, the maximum derivation across the network is two times
the randomization value. Qperf is used to establish a continuous
connection for twominutes. Figure 9 shows that during experiments
with the highest randomization value, the throughput (amount of
packets per seconds) on the blue line drops every 20 seconds and
thus corresponds with the PH interval. Simultaneously with these
speed drops, the number of resets rises, as packets cannot be sent
to the correct destination port.

A variety of randomization values have been compared indicat-
ing that the latency of the network between the gateways can be
neglected as it is relatively small. The results exceed the expected
values by far, since NTP can provide “accuracies generally in the
range of 0.1 ms with fast LANs and computers and up to a few
tens of milliseconds in the intercontinental Internet” [22]. Figure 11
shows that it has no impact on the resulting bandwidth.

During additional tests the compatibility of modern webapplica-
tions and their backend calls to NAS has been proven. Requests to
NAS-protected backends did not cause any problems in webappli-
cation during vIP changes.

4.2 Security
The main focus of the MTD modules NAS and PH is to improve
the security of given networks on the exploration surface. The
impact will be evaluated twofold: First, by applying reconnaissance
methods to the network, namely network scans. Second, using the
following real and experimental cyber-threats for the evaluation:

(1) Armitage with Metasploit
(2) Mass and optimized exploit with Metasploit
(3) PoC worm

4.2.1 Network Scans. During the preparation of attacks, it is nec-
essary to gain information about running hosts and the services
the host provides. Thus, the initial reconnaissance procedure can
be divided into two aspects: finding active hosts and looking for
active services. In order to find the hosts, the attacker may initially
perform ping scans, for instance, using Nmap. It combines the stan-
dard ping scan, an ICMP echo request, with a TCP SYN to HTTP
(port 80), TCP ACK to HTTPS (port 443) and an ICMP timestamp

0 100 200 300
0

200

400

600

Randomisation value [ms]

Sp
ee
d
[K
B/
se
c]

Figure 11: PH - Time Inaccuracy Bandwidth

request [21]. Hence, the Apache servers, in the test environment
are easy to detect.

The Nmap scans originated from outside of the MT client net-
work on an attacker-network host. Since connectivity to predefined
standard ports is needed to perform these kinds of scans, PH is
deactivated in the network, otherwise it would replace the ports
with vPorts. For that reason, the evaluation of host scans focuses
uniquely on the NAS approach as ports remain unchanged. The
Nmap insane mode is used to scan big virtual subnets as fast as pos-
sible. During the experiments, just the virtual subnets are scanned,
assuming that the attacker has already gained knowledge about the
network structure. Still, the test took over 20 minutes scanning the
whole subnet. Network scans of the whole server network are also
performed and showed no difference in the results. In each test, the
Nmap scanner was able to find several active hosts. In total eight
Apache hosts were part of the server network and 48 virtual subnets
could be selected by the MT-Controller. The detected subnets have
been analyzed for five different tests under the same conditions as
observed on Figure 12. As each virtual subnet is just attached to
one host at one point in time, the subnets should not be detected
twice. The blue bar indicates how many subnets and hosts have
been found in total. A few subnets have been found multiple times,
which can be an indicator for hosts that have been found multiple
times during their movement through virtual subnets. Additionally,
hosts found in different subnets could have been also detected sev-
eral times, due to the changes of the virtual subnets (LFM) over the
timespan of the scan process.

As previously indicated, in addition to host detection, services
have also been analyzed. If just popular ports are scanned, the re-
sults show the same behaviour as without using NAS, despite the
negative effects on host detection. Only if a full port scan is per-
formed, the NAS shuffle cycle is faster than the port scan. Therefore
the results become invalid. If only PH is used, it is not possible to
detect open ports with the fast scan mode. Even if all ports are
scanned, no results are detected. Only a few ports are open, as only
Apache has been installed as a server. Since administrators try to
limit the number of open ports, this can be considered a realistic
setup.

4.2.2 Cyber-threats. NAS and PH are not able to limit the effects
of attacks. However, some kind of threats include techniques for
reconnaissance as well. These include different kinds of automated
attacks and worms, which can spread across the network indepen-
dently.

1 2 3

0

5

10

15

Test number [#]

D
et
ec
tio

n
co
un

t[
#]

Hosts Found Subnets Found
Double Subnet Detection Triple Subnet Detection

Figure 12: NAS - NMap Ping Scan Test Results

Metasploit: As previous network scans showed the effects of NAS
and PH on the network security under the precondition that attacks
originate from just one static location, more advanced experiments
are necessary. These should be able to show the effects of addi-
tional processes in an attack procedure. Vulnerable machines were
deployed in the environment, to replicate a realistic network. To be
able to use realistic attacks, the Metasploit framework was used as
it provides exploit management and can deliver different kinds of
payloads. A host with several vulnerabilities has been set up which
uses a Metasploitable Docker container.

Armitage provides an easy-to-use user interface for Metasploit
and full functionality for attack management. The exploitation
feature of Armitage (Hail Mary) has been used to automatically
scan networks and start exploits. During experiments with PH, it
was not possible to identify any vulnerabilities, as rPorts could not
be identified. Additional experiments were carried out while the
NAS system protected the server network. The integrated network
scanners were able to identify some of the hosts but Armitage
was not able to identify exploits or even launch attacks, as the vIP
had already changed before the port scans could be started. As it
was not possible to use the Armitage Hail Mary tool on PH and
NAS protected networks, more advanced methods are necessary
to evaluate the protected network more efficiently. The cause for
the failed vulnerability detection was that it launched with a delay
after all the hosts had been identified and the subnet was scanned
completely. The mass_exploit script provides a fully automated
way to perform a Hail Mary attack. As the mass_exploit script
is missing host detection, it is possible to apply it to PH systems
only [27]. Without PH, it was able to identify vulnerabilities and
exploit them.While PHwas activated, it was not possible to identify
any vulnerabilities. To add host discovery functionality and directly
launch the attacks after hosts have been found, an improved mass
exploitation script has been created, which is able to activate the
mass_exploit as soon as one host has been found. Additionally,
it is possible to preconfigure exploits and set all the necessary
parameters. When the optimized Hail Mary attack is launched
directly after a host is found, during NAS usage, it was able to find
targets on the host. However, was is not possible to launch the
attack and get a remote shell. The Mass Exploit was not able to
detect vulnerabilities fast enough and had to be improved manually.
To increase the effectiveness of the script, the exploitation can be

directly started after a host has been found and the scanning process
has been parallelized. This is the most aggressive configuration that
is possible and follows the assumption that the attacker has already
gained knowledge about vulnerabilities. In two out of three tests,
the attack was not able to find the target host fast enough. Anyhow,
if the attack found and identified the target, it was able to penetrate
the host successfully. Therefore, the host scanwas further optimized
to run in several different threads.
Worms: As of now we have looked at exploitation of singe hosts
within enclosed segments of MTD-protected networks. In a pro-
duction network, worms that spread from one segment to another
pose a realistic threat that we also need to evaluate against [34].
As it is hard to find and deploy historical worms and effectively
measure their propagation, a new proof-of-concept worm, named
Networm, has been created and open-sourced for benchmark pur-
poses of network-level MTD approaches [28]. Networm is also able
to provide information about its propagation across the network.

Also, it will not use any software-dependent vulnerabilities. It
will launch a brute-force attack on the SSH endpoint login data.
The new worm can be classified according to the taxonomy created
by Weaver et. al. [34] using i) Target Discovery, ii) Propagation
Carriers and Distribution Mechanics, iii) Activation, iv) Payload,
and v) Ecology.

Target Discovery: Nmap is implemented in insane mode as this is
the most aggressive scanning mode available. The subnets for host
discovery are chosen based on the configuration of the network
interfaces and the routes. Thus, all locally connected subnets and
targets can be scanned. It is defined which subnets are not allowed
to be scanned explicitly to limit the possible worm propagation
to the test environment. All detected subnets get split into several
subnets and are randomly scanned, to avoid simultaneous scans by
multiple worms. Propagation Carriers and Distribution Mechan-
ics: The worm can be classified as self-carried because it is able
to propagate itself to another host. Once the SSH credentials are
correctly guessed, it is possible to establish a connection to the
server. If the host has not already been infected, all necessary files
will be transferred using the SSH File Transfer Protocol (SFTP) and
will afterwards execute the worm on the newly infected host. After
that, no connection from the attacking to the newly infected host
is required anymore. Activation: Since the infecting host launches
the worm, it can be classified as a self-activation worm. Payload:
The worm does not need to execute any further processes besides
the propagation to other hosts. The payload is classified as non-
functional. Ecology: Given that every host needs to have simple
guessable root login credentials, the environment is classified as
monoculture.

To be able to evaluate the behaviour of the worm, it transfers a
victim log containing the IP addresses and the current timestamp of
each infection to the command and control server and every newly
infected host. The command and control server is not part of the test
network and therefore not shown in the simplified representation
of the worm propagation. Therefore, it is possible to read the worm
propagation routes directly from a folder on the server.

The test network has been expanded for the worm propagation
experiment. The network, depicted on Figure 13 and 14, has been
divided into three parts: green, blue, and red. The worm will be
deployed to one machine in the red non-MT area of the network.

Figure 13: Worm Attacks - Process of Spreading Networm
with PH

This could be, for example, an internal company network. This
network is for employees without security clearance. While the
blue segment for clients with security clearance. They have a valid
DNS configuration and know the domain names of NAS-protected
servers. Additionally, they are able to communicate with PH via the
client-side MT-Port-Gateway. Every part of the network contains
ten hosts. Finally, the green server network is split into two subnets
with separate MT-Gateways.

Port Hopping: Similar to Section 4.1, the first test was carried
out activating the PH protection. Thus, it is not possible for hosts in
the red segment to contact servers using standard ports. The results
depicted on Figure 13 show that the worm was able to spread in
the red section, which proves that the worm is working properly.
Moreover, one host was able to detect and infect a host in the blue
section. Next, one host of the blue network found the upper subnet
of the green network infecting all their hosts. This shows that
the worms can only take the gateway-to-gateway route to infect
hosts. In other words, it was not possible to infect the green server
network directly from the green network, effectively adding an
additional layer of defense.

Network Address Shuffling: Unlike with PH, during the tests
with NAS, it was possible to spread the worm from each network to
the next. Initially, the worms in the red area infect each other. Next,
two hosts of the blue network were able to infect the green server
network. Each host was only able to infect one other host. A host in
the red segment has infected the lower green network. Again only
one host of the green network has been infected directly. Thus, the
experiment shows that it was not possible to infect more than one
host at once, given the high scanning speed and an easy challenge
(brute-forcing only a few passwords). Even shorter HFM shuffling
cycles (e.g., 10 s) did not alter the behaviour.

5 CONCLUSION
In this paper, we proposed OpenMTD, a framework for efficient
MTD evaluation. In detail, we presented the following contribu-
tions: (i) Development of OpenMTD, a modular MTD evaluation
platform that allows for ease of reproducibility which consists of

Figure 14: Worm Attacks - Process of Spreading Networm
with NAS

a virtualized testbed and a software framework; (ii) Implementa-
tion of PH and NAS in a hybrid approach that leaves it up to the
operator’s discretion which features to use; (iii) Implementation of
additional modules, e.g. connection tracking and honeypots, to ex-
tend current approaches. All of those parts have been made publicly
accessible to enable coherent evaluations of other approaches in the
MTD community. Moreover, (iv) we have evaluated PH, NAS, and
our hybrid approach within OpenMTD against each other. On the
one hand, it turned out that a heavy performance impact has to be
tolerated once any of those methods is deployed. On the other hand,
the level of security rapidly increases within an MTD protected
network as not a single out-of-the-box tool, but only our (v) self-
written Python worm, which performed very aggressive scanning
and immediate exploitation afterwards, was able to penetrate the
additional layer of defense. At the current development stage, we
therefore suggest to deploy any of the evaluated MTD solutions
only in networks that host high-value targets. Cost of deployment
is high, but the added security benefit is considerable. We hope
that OpenMTD will be used by fellow researchers in the field to
evaluate their ideas and provide some modules in this research as a
starting point.

As future work, we plan to pushing in-simulation advancements
and implement MTD approaches on real hardware in our IoT Lab.
We expect to reveal how much overhead is actually introduced by
using simulation environments. Implementations on real hardware
call for significant additional work, but will bring the operator com-
munity even more confidence in MTD approaches once shown that
not only networks within simulations, but also on real hardware
can benefit from this new branch of research.

ACKNOWLEDGEMENTS
The authors would like to thank the Chair for Communication
Systems and Network Security as well as the Research Institute
CODE for their comments and improvements. Research supported,
in parts, by EU H2020 Project CONCORDIA GA 830927.

REFERENCES
[1] Ehab Al-Shaer, Qi Duan, and Jafar Haadi Jafarian. 2013. Random Host Mutation

for Moving Target Defense. In Security and Privacy in Communication Networks,
Angelos D. Keromytis and Roberto Di Pietro (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 310–327.

[2] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. 2005. De-
fending against Hitlist Worms Using Network Address Space Randomization. In
Proceedings of the 2005 ACM Workshop on Rapid Malcode. Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/1103626.1103633

[3] Gal Badishi, Amir Herzberg, and Idit Keidar. 2005. Keeping Denial-of-Service
Attackers in the Dark. In Distributed Computing, Pierre Fraigniaud (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 18–32.

[4] Cisco Systems, Inc. 2018. Cisco Global Cloud Index: Forecast and Methodology,
2016–2021 White Paper. https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.html Last ac-
cessed 29 January 2020.

[5] Warren Connell, Massimiliano Albanese, and Sridhar Venkatesan. 2017. A Frame-
work for Moving Target Defense Quantification. In ICT Systems Security and
Privacy Protection, Sabrina De Capitani di Vimercati and Fabio Martinelli (Eds.).
Springer International Publishing, Cham, 124–138.

[6] curl Team. [n.d.]. curl - the man page. https://curl.haxx.se/docs/manpage.html
Last accessed 4 March 2020.

[7] Matthew Dunlop, Stephen Groat, William Urbanski, RandyMarchany, and Joseph
Tront. 2011. MT6D: A Moving Target IPv6 Defense. In 2011 - MILCOM 2011 Mili-
tary Communications Conference. 1321–1326. https://doi.org/10.1109/MILCOM.
2011.6127486

[8] Daniel Fraunholz, Daniel Krohmer, Simon Duque Anton, and Hans Dieter Schot-
ten. 2018. Catch Me If You Can: Dynamic Concealment of Network Entities. In
Proceedings of the 5th ACMWorkshop on Moving Target Defense (Toronto, Canada)
(MTD ’18). Association for Computing Machinery, New York, NY, USA, 31–39.
https://doi.org/10.1145/3268966.3268970

[9] Daniel Fraunholz, Daniel Reti, Simon Duque Anton, and Hans Dieter Schotten.
2018. Cloxy: A Context-Aware Deception-as-a-Service Reverse Proxy for Web
Services. In Proceedings of the 5th ACM Workshop on Moving Target Defense
(Toronto, Canada) (MTD ’18). Association for Computing Machinery, New York,
NY, USA, 40–47. https://doi.org/10.1145/3268966.3268973

[10] Johann George. [n.d.]. qperf - Linux man page. https://linux.die.net/man/1/qperf
Last accessed 4 March 2020.

[11] GNS3. 2020. GNS3 Documentation. https://docs.gns3.com/ Last accessed 16
February 2020.

[12] Kousaburou Hari and Tadashi Dohi. 2010. Sensitivity Analysis of Random Port
Hopping. In 2010 7th International Conference on Ubiquitous Intelligence Comput-
ing and 7th International Conference on Autonomic Trusted Computing. 316–321.
https://doi.org/10.1109/UIC-ATC.2010.69

[13] Internet Systems Consortium, Inc. [n.d.]. dig - Linux man page. https://linux.
die.net/man/1/dig Last accessed 5 March 2020.

[14] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. 2012. Openflow Random
Host Mutation: Transparent Moving Target Defense Using Software Defined
Networking. In Proceedings of the First Workshop on Hot Topics in Software Defined
Networks (Helsinki, Finland) (HotSDN ’12). Association for Computing Machinery,
New York, NY, USA, 127–132. https://doi.org/10.1145/2342441.2342467

[15] Jafar Haadi H. Jafarian, Ehab Al-Shaer, and Qi Duan. 2014. Spatio-Temporal
Address Mutation for Proactive Cyber Agility against Sophisticated Attackers.
In Proceedings of the First ACM Workshop on Moving Target Defense (Scottsdale,
Arizona, USA) (MTD ’14). Association for Computing Machinery, New York, NY,
USA, 69–78. https://doi.org/10.1145/2663474.2663483

[16] Hyo jin Lee, Myung sup Kim, James W. Hong, and Gil haeng Lee. 2002. QoS
Parameters to Network Performance Metrics Mapping for SLA Monitoring. http:
//mail.apnoms.org/knom/knom-review/v5n2/4.pdf

[17] Dorene Kewley, Russ Fink, John Lowry, and Mike Dean. 2001. Dynamic ap-
proaches to thwart adversary intelligence gathering. In Proceedings DARPA In-
formation Survivability Conference and Exposition II. DISCEX’01, Vol. 1. 176–185
vol.1. https://doi.org/10.1109/DISCEX.2001.932214

[18] Henry C. J. Lee and Vrizlynn L. L. Thing. 2004. Port hopping for resilient networks.
In IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004, Vol. 5.
3291–3295 Vol. 5. https://doi.org/10.1109/VETECF.2004.1404672

[19] Lockheed Martin Corporation. 2015. Cisco Global Cloud Index: Forecast
and Methodology, 2016–2021 White Paper. https://www.lockheedmartin.
com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_
Advantage_Cyber_Kill_Chain.pdf Last accessed 13 February 2020.

[20] Yue-Bin Luo, BaoshengWang, andGui-Lin Cai. 2015. Analysis of Port Hopping for
Proactive Cyber Defense. In International Journal of Security and Its Applications,
Vol. 9. 123–134. https://doi.org/10.14257/ijsia.2015.9.2.12

[21] Gordon Lyon. [n.d.]. Nmap Referece Guide. https://nmap.org/book/man.html
Last accessed 7 March 2020.

[22] David Mills. 2008. Network Time Synchronization Research Project. https:
//www.eecis.udel.edu/~mills/ntp.html Last accessed 25 February 2020.

[23] Jeffrey Mogul and Jon Postel. 1985. Internet Standard Subnetting Procedure. STD 5.
RFC Editor. http://www.rfc-editor.org/rfc/rfc950.txt http://www.rfc-editor.org/
rfc/rfc950.txt.

[24] R. Mohtasin, P. W. C. Prasad, A. Alsadoon, G. Zajko, A. Elchouemi, and A. K.
Singh. 2016. Development of a virtualized networking lab using GNS3 and
VMware workstation. In 2016 International Conference on Wireless Communica-
tions, Signal Processing and Networking (WiSPNET). 603–609. https://doi.org/10.
1109/WiSPNET.2016.7566205

[25] Jon Postel. 1980. User Datagram Protocol. STD 6. RFC Editor. http://www.rfc-
editor.org/rfc/rfc768.txt http://www.rfc-editor.org/rfc/rfc768.txt.

[26] Jon Postel. 1981. Transmission Control Protocol. STD 7. RFC Editor. http:
//www.rfc-editor.org/rfc/rfc793.txt http://www.rfc-editor.org/rfc/rfc793.txt.

[27] r00t 3xp10it. [n.d.]. mass_exploiter. https://gist.github.com/r00t-3xp10it/
7278942915a0514cecd73fd94a070b42 Last accessed 7 March 2020.

[28] Poschinger Richard. 2020. NetWorm, a benchmarking worm for MTD analysis.
https://github.com/rposchinger/networm_py3

[29] Poschinger Richard. 2020. OpenMTD: A framework for efficient MTD evaluation.
https://github.com/rposchinger/OpenMTD

[30] Boris Rogier. 2016. Measuring Network Performance: Links Between Latency,
Throughput and Packet Loss. https://accedian.com/enterprises/blog/measuring-
network-performance-latency-throughput-packet-loss/ Last accessed 5 March
2020.

[31] H. Singh, W. Beebee, and E. Nordmark. 2010. IPv6 Subnet Model: The Relationship
between Links and Subnet Prefixes. RFC 5942. RFC Editor. http://www.rfc-
editor.org/rfc/rfc5942.txt http://www.rfc-editor.org/rfc/rfc5942.txt.

[32] The Apache Software Foundation. [n.d.]. ab - Apache HTTP server benchmarking
tool. https://httpd.apache.org/docs/2.4/programs/ab.html Last accessed 5 March
2020.

[33] Gernot Vormayr. 2019. fnfqueue. https://pypi.org/project/fnfqueue/ Last
accessed 23 February 2020.

[34] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. 2003.
A Taxonomy of Computer Worms. In Proceedings of the 2003 ACM Workshop on
Rapid Malcode (Washington, DC, USA) (WORM ’03). Association for Computing
Machinery, New York, NY, USA, 11–18. https://doi.org/10.1145/948187.948190

[35] Justin Yackoski, Peng Xie, Harry Bullen, Jason Li, and Kun Sun. 2011. A Self-
shielding Dynamic Network Architecture. In 2011 - MILCOM 2011 Military
Communications Conference. 1381–1386. https://doi.org/10.1109/MILCOM.2011.
6127498

https://doi.org/10.1145/1103626.1103633
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://curl.haxx.se/docs/manpage.html
https://doi.org/10.1109/MILCOM.2011.6127486
https://doi.org/10.1109/MILCOM.2011.6127486
https://doi.org/10.1145/3268966.3268970
https://doi.org/10.1145/3268966.3268973
https://linux.die.net/man/1/qperf
https://docs.gns3.com/
https://doi.org/10.1109/UIC-ATC.2010.69
https://linux.die.net/man/1/dig
https://linux.die.net/man/1/dig
https://doi.org/10.1145/2342441.2342467
https://doi.org/10.1145/2663474.2663483
http://mail.apnoms.org/knom/knom-review/v5n2/4.pdf
http://mail.apnoms.org/knom/knom-review/v5n2/4.pdf
https://doi.org/10.1109/DISCEX.2001.932214
https://doi.org/10.1109/VETECF.2004.1404672
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://doi.org/10.14257/ijsia.2015.9.2.12
https://nmap.org/book/man.html
https://www.eecis.udel.edu/~mills/ntp.html
https://www.eecis.udel.edu/~mills/ntp.html
http://www.rfc-editor.org/rfc/rfc950.txt
http://www.rfc-editor.org/rfc/rfc950.txt
http://www.rfc-editor.org/rfc/rfc950.txt
https://doi.org/10.1109/WiSPNET.2016.7566205
https://doi.org/10.1109/WiSPNET.2016.7566205
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://gist.github.com/r00t-3xp10it/7278942915a0514cecd73fd94a070b42
https://gist.github.com/r00t-3xp10it/7278942915a0514cecd73fd94a070b42
https://github.com/rposchinger/networm_py3
https://github.com/rposchinger/OpenMTD
https://accedian.com/enterprises/blog/measuring-network-performance-latency-throughput-packet-loss/
https://accedian.com/enterprises/blog/measuring-network-performance-latency-throughput-packet-loss/
http://www.rfc-editor.org/rfc/rfc5942.txt
http://www.rfc-editor.org/rfc/rfc5942.txt
http://www.rfc-editor.org/rfc/rfc5942.txt
https://httpd.apache.org/docs/2.4/programs/ab.html
https://pypi.org/project/fnfqueue/
https://doi.org/10.1145/948187.948190
https://doi.org/10.1109/MILCOM.2011.6127498
https://doi.org/10.1109/MILCOM.2011.6127498

	Abstract
	1 Introduction
	2 Related Work
	3 OpenMTD
	4 Evaluation
	4.1 Performance
	4.2 Security

	5 Conclusion
	References

